Back
 MSA  Vol.8 No.13 , December 2017
Characterization and Lifetime Estimation of High Density Polyethylene Containing a Prodegradant Agent
Abstract: High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w®, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheometry, and scanning electron microscopy (SEM). The work contributes to decreasing the products made of non-biodegradable polymeric materials derived from fossil sources which are have become a problem due to their increasingly inappropriate disposal and long degradation time in the environment. The obtained results indicated that there was no degradation of the samples due to processing. No significant changes in melting temperature, crystallinity, viscoelastic behavior, molecular weight and chemical composition were observed. Images from SEM analysis showed particles on HDPE surface, attributed to prodegradant additive d2w®. Oxidation Onset Temperature (OOT) results showed that the additive d2w® accelerated the degradation of HDPE. The activation energy (Ea) was determined by Ozawa-Wall-Flynn method. The obtained values were used for lifetime estimation of the samples. At 25°C, HDPE with d2w® showed a lifetime 50% higher than that of HDPE without this additive. This fact is attributed to the presence of stabilizers in masterbatch d2w® and the absence of oxygen in thermogravimetric analysis.
Cite this paper: Erbetta, C. , Azevedo, R. , Andrade, K. , e Silva, M. , Freitas, R. and Sousa, R. (2017) Characterization and Lifetime Estimation of High Density Polyethylene Containing a Prodegradant Agent. Materials Sciences and Applications, 8, 979-991. doi: 10.4236/msa.2017.813072.
References

[1]   Brito, G.F., Agrawal, P., Araújo, E.M. and Mélo, T.J.A. (2011) Biopolymers, Biodegradable Polymers and Polymer Green. Revista Eletronica de Materiais e Processos, 6, 127-139.
http://www.dema.ufcg.edu.br/revista/

[2]   Santos, P.A, Oliveira, M.N., De Paoli, M.A., Freitas, V.G. and Rosa, D.S. (2013) Pro-Oxidant Effect Evaluation in PP in blends with PHB. Polímeros: Ciência e Tecnologia, 23, 432-439.
https://doi.org/10.4322/polimeros.2013.036

[3]   Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D. and Russell, A.E. (2004) Lost at Sea: Where Is All the Plastic? Science, 304, 838-838.
https://doi.org/10.1126/science.1094559

[4]   Dalmolin, E. (2007) Avaliacao de Polietilenos Contendo Aditivos Pró-Degradante. M.Sc. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre.

[5]   Ammala, A., Bateman, S., Dean, K., Petinakis, S., Sangwan, P., Wong, S., Yuan, Q. and Yu, L. (2011) An Overview of Degradable and Biodegradable Polyolefins. Progress in Polymer Science, 36, 1015-1049.
https://doi.org/10.1016/j.progpolymsci.2010.12.002

[6]   Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C. and Leong, K.H. (2011) An Overview of Degradable and Biodegradable Polyolefins. Progress in Polymer Science, 36, 1015-1049.
https://doi.org/10.1016/j.progpolymsci.2010.12.002

[7]   Roy, P.K., Hakkarainen, M., Varma, I.K. and Albertsson, A.C. (2011) Degradable Polyethylene: Fantasy or Reality. Environmental Science & Technology, 45, 4217-4227.
https://doi.org/10.1021/es104042f

[8]   Selke, S., Auras, R., Nguyen, T.A., Aguirre, E.C., Cheruvathur, R. and Liu, Y. (2015) Evaluation of Biodegradation-Promoting Additives for Plastics. Environmental Science & Technology, 49, 3769-3777.
http://pubs.acs.org/doi/abs/10.1021/es504258u
https://doi.org/10.1021/es504258u


[9]   Santos, A.S.F., Freire, F.H.O., Costa, B.L.N. and Manrich, S. (2012) Plastic Bags: Sustainable Destinations and Replacement Alternatives. Polímeros: Ciência e Tecnologia, 22, 228-237.
https://doi.org/10.1590/S0104-14282012005000036

[10]   Chelliah, A., Subramaniam, M., Gupta, R. and Gupta, A. (2017) Evaluation on the Thermo-Oxidative Degradation of PET Using Prodegradant Additives. Indian Journal of Science and Technology, 10, 1-5.
http://www.indjst.org/index.php/indjst/article/view/1112122
https://doi.org/10.17485/ijst/2017/v10i6/111212


[11]   Batista, N.L., Costa, M.L., Iha, K. and Botelho, E.C. (2013) Evaluation of Thermal Degradation and the Estimated Useful Lives of Compounds Poly(ether imide)/Carbon Fiber. Proceedings of the 12th Brazilian Congress of Polymers (CBPol), Florianópolis, 22-26 September 2013.

[12]   Ozawa, T. (1965) New Method of Analyzing Thermogravimetric Data. Bulletin of Chemical Society of Japan, 38, 1881-1886.
https://doi.org/10.1246/bcsj.38.1881

[13]   Flynn, J.H. and Wall, L.A. (1966) A Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data. Journal of Polymers Science—Part B: Polymer Letters, 4, 323-328.
https://doi.org/10.1002/pol.1966.110040504

[14]   Horn, M.M., Martins, V.C.A. and Plepis, A.M.G. (2010) Activation Energy Determination in Polymeric Hydrogels from TGA Data. Polímeros: Ciência e Tecnologia, 20, 201-204.
https://doi.org/10.1590/S0104-14282010005000025

[15]   ASTM E1877-13. Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data, 2013.

[16]   Batista, N.L. (2012) Influence of Weather on the Thermal and Mechanical Properties of Composite PEI/Carbon Fiber. M.Sc. Dissertation, Technological Institute of Aeronautics, Sao José dos Campos.

[17]   Carvalho, C.L., Silveira, A.F. and Rosa, D.S. (2013) A study of the Controlled Degradation of Polypropylene Containing Pro-Oxidant Agents. Springer Plus, 2, 623.
https://doi.org/10.1186/2193-1801-2-623

[18]   Roy, P.K, Surekha, P., Rajagopal, C. and Choudhary, V. (2007) Thermal Degradation Studies of LDPE Containing Cobalt Stearate as Pro-Oxidant. eXPRESS Polymer Letters, 1, 208-216.
https://doi.org/10.3144/expresspolymlett.2007.32

[19]   Maryudi, A.H., Rosli, M.Y. and Mohammad, D.H.B. (2013) Thermo-Oxidative Degradation of High Density Polyethylene Containing Manganese Laurate. International Journal of Engineering Research and Applications (IJERA), 3, 1156-1165.
http://www.ijera.com/pages/v3no2.html

[20]   ASTM D3418-12e1. (2012) Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry.

[21]   ASTM E2009-08e1. (2014) Standard Test Methods for Oxidation Onset Temperature of Hydrocarbons by Differential Scanning Calorimetry.

[22]   ASTM E1641-07. (2007) Standard Test Method for Decomposition Kinetics by Thermogravimetry.

[23]   Snyder, R.G. (1980) Spectroscopic Methods—Methods in Experimental Physics, 16 (A) 73. Academic Press, New York, 73-240.

[24]   Hinsken, H., Moss, S., Pauchet, J. and Zweifel, H. (1991) Degradation of Polyolefin during Melt Processing. Polym Degrad Stab, 34, 279-293.
https://doi.org/10.1016/0141-3910(91)90123-9

[25]   Peacock, A.J. (2000) Handbook of Polyethylene—Structures, Properties and Applications. Marcel Dekker, New York, 123-375.

 
 
Top