AHS  Vol.6 No.4 , December 2017
The Decisive Role Played by Leibniz in the History of Both Science and Philosophy of Knowledge
Abstract: The present paper addresses the criticism of Kant that he ignored both the non-classical reasoning of the empiricists and Leibniz’s attempt to found mechanics anew. By taking into account this logical divergence Kant’s antinomiesactually applying Leibniz’s two labyrinths of human reason to particular subjectsrepresent two parallel ways of reasoning according to the two alternatives of a dichotomy regarding the kind of logic. By adding a dichotomy regarding the kind of mathematics a new conception of the foundations of the science is obtained. Leibniz’s philosophy of knowledge represents the closest approximation to these foundations in both the history of science and the history of philosophy of knowledge.
Cite this paper: Drago, A. (2017) The Decisive Role Played by Leibniz in the History of Both Science and Philosophy of Knowledge. Advances in Historical Studies, 6, 113-127. doi: 10.4236/ahs.2017.64009.

[1]   Bhaskar, R. (1981). Kant’s Philosophy of Science. In W. F. Bynum, E. J. Brone, & R. Porter (Eds.), Dictionary of the History of Science, London: Macmillan.

[2]   Bishop, E. (1967). Foundations of Constructive Mathematics. New York: Mc Graw-Hill.

[3]   Carnot, L. (1783). Essai sur les machines en général. Dijon: Defay.

[4]   Cassirer, E. (1927). The Individual and the Cosmos in Renaissance Philosophy. Chicago: Chicago U.P.

[5]   Cassirer, E. (1954). Storia della filosofia moderna Gnoseologia-Storia-15.-19. sec. Torino: Einaudi.

[6]   Chellas, B. F. (1980). Modal Logic. Cambridge: Cambridge U.P.

[7]   Coppola, A., & Drago, A. (1984). Galilei ha inventato il principio d’inerzia? Proposta di una nuova interpretazione della sua opera. In S. D’Agostino, & S. Petruccioli (Eds.), Atti V Congr. Naz. St. Fisica (pp. 319-327). Roma: Accademia dei XL.

[8]   Couturat, L. (1905). La Philosophie des Mathématiques de Kant. In La Philosophie des Mathématiques (pp. 235-308). Heidelberg: Olms.

[9]   de Santillana, G. (1960). Processo a Galilei. Milano: Mondadori.

[10]   Drago, A. (1987). An Effective Definition of Incommensurability. comm. to VIII Congress on Logic. Methodology and Phil. Sci., Moscow, 4, 159-162. In C. Cellucci et al. (Eds.), Temi e prospettive della logica e della filosofia della scienza contemporanea (vol. II, pp. 117-120).

[11]   Drago, A. (1988). A Characterization of Newtonian Paradigm. In P. B. Scheurer, & G. Debrock (Eds.), Newton’s Scientific and Philosophical Legacy (pp. 239-252). Dordrecht: Kluwer Acad. P.

[12]   Drago, A. (1994). The Modem Fulfilment of Leibniz’ Program for a Scientia generalis. In H. Breger (Ed.), VI Int. Kongress: Leibniz and Europa, Hannover (pp. 185-195) Leibniz’s Scientia Generalis Reinterpreted and Accomplished by Means of Modem Scientific Theories. In C. Cellucci et al. (Eds.), Logica e Filosofia della Scienza. Problemi e Prospettive (pp. 35-54). Pisa: ETS.

[13]   Drago, A. (1996). Alternative Mathematics and Alternative Theoretical Physics: The Method for Linking Them Together. Epistemologia, 19, 33-50.

[14]   Drago, A. (2001a). The Several Categories Suggested for the “New Historiography of Science”: An Interpretative Analysis from a Foundational Viewpoint”. Epistemologia, 24, 48-82.

[15]   Drago, A. (2001b). The Birth of an Alternative Mechanics: Leibniz’ Principle of Sufficient Reason. In H. Poser et al. (Eds.), VII Internationaler Leibniz-Kongress, Nihil Sine Ratione (Vol. I, pp. 322-330). Berlin.

[16]   Drago, A. (2003). La riforma della dinamica secondo G.W. Leibniz. Benevento: Helvetius.

[17]   Drago, A. (2004). A New Appraisal of Old Formulations of Mechanics. American Journal of Physics, 72, 407-409.

[18]   Drago, A. (2010). Dialectics in Cusanus (1401-1464), Lanza del Vasto (1901-1981) and beyond. Epistemologia, 33, 305-328.

[19]   Drago, A. (2012a). Pluralism in Logic: The Square of Opposition, Leibniz’ Principle of Sufficient Reason and Markov’s Principle. In J.-Y. Béziau, & D. Jacquette (Eds.), Around and Beyond the Square of Opposition (pp. 175-189). Basel: Birkhaueser.

[20]   Drago, A. (2017a). What Was the Role of Galileo in the Century-Long Birth of Modern Science? Fundamenta Scientiae, 21, 35-54.

[21]   Drago, A. (2017b). A Scientific Re-Assessment of Leibniz’s Principle of Sufficient Reason. In R. Pisano et al. (Eds.), The Dialogue between Sciences, Philosophy and Engineering. New Historical and Epistemological Insights. Homage to Gottfried W. Leibniz 1646-1716 (pp. 121-140). London: College Publishing.

[22]   Drago, A., & Venezia, A. (2007). Popper’s Falsificationism Interpreted by Non-Classical Logic. Epistemologia, 30, 235-264.

[23]   Dummett, M. (1977). Elements of Intuitionism. Oxford: Claredon.

[24]   Ferraris, M. (2013). Goodby Kant! New York, NY: SUNY P.

[25]   Gardiès, J.-L. (1991). Le raisonnement par l’absurde. Paris: P.U.F.

[26]   Gillispie, C. C. (1971). Lazare Carnot Savant. Princeton: Princeton U.P.

[27]   Grattan-Guinness, I. (1980). Convolution in French Science, 1800-1840 (Vol. 2). Basel: Birkhauser.

[28]   Grize, J. B. (1970). Logique. In J. Piaget (Ed.), Logique et connaissance scientifique, éncyclopédie de la Pléiade (pp. 135-288, 206-210). Paris: Gallimard.

[29]   Hanna, R. (2013). Kant’s Theory of Judgment. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy, Sect. 2.1.

[30]   Hinske, N. (1965). Kants Begriff der Antinomier und die Etappen seine Ausarbeitung. Kant-Studien, 56, 485-496.

[31]   Horn, L. R. (2002). The Logic of Logical Double Negation. In Proc. Sophia Symposium on Negation (pp. 79-112). Tokyo: U. of Sophia.

[32]   Hume, D. (1759). An Inquiry Concerning Human Understanding. London.

[33]   Jauernig, A. (2008). Kant’s Critique of the Leibnizian Philosophy: Contra the Leibnizians, But Pro Leibniz. In D. Garber, & B. Longuenesse (Eds.), Kant and the Early Moderns (pp. 41-63). Princeton: Princeton U.P.

[34]   Kant, I. (1781). Kritik der Reine Vernuft, Riga (2nd ed.).

[35]   Kant, I. (1798). AKB. In Gesammelte Werke, 1902 (Vol. 12). Berlin: De Gruyter.

[36]   Kneale, W. C., & Kneale, M. (1962). The Development of Logic. Oxford: Claredon.

[37]   Koyré, A. (1957). From the Closed World to the Infinite Universe. Baltimore: U. Maryland P.

[38]   Leibniz, G. W. (1677). Letter to H. Fabri.

[39]   Leibniz, G. W. (1686). Letter to Arnaud.

[40]   Leibniz, G. W. (1875-90). Die philosophischen Schriften. Hildesheim: Georg Olms.

[41]   Loparic, Z. (1990). The Logical Structure of the First Antinomy. Kant-Studien, 81, 280-303.

[42]   Markov, A. A. (1962). On Constructive Mathematics. Trudy Matematicheskogo Instituta imeni VA Steklova, 67, 8-14.

[43]   Prawitz, D. (1976). Meaning and Proof. Theoria, 43, 6-39.

[44]   Prawitz, D., & Malmnaess, P.-E. (1968). A Survey of Some Connections between Classical, Intuitionistic and Minimal Logic. In A. Schmidt, H. Schuette, & E. J. Thiele (Eds.), Contributions to Mathematical Logic (pp. 215-229). Amsterdam: North-Holland.

[45]   Quine, W. O. (1974). On Popper’s Negative Ontology. In P. A. Schilpp (Ed.), The Philosophy of Karl Popper (pp. 218-220). Open Court, La Salle IL.

[46]   Robinson, A. (1960). Non-Standard Analysis. Amsterdam: Noth-Holland.

[47]   Scarpa, F. M. (2002). Lazare Carnot e la Relatività ristretta. Il Giornale di Fisica, 43, 205-212.

[48]   Scholz, H. (1931). Geschichte der Logik. Berlin: Junker und Dünnhaupt.

[49]   Troelstra, A., & van Dalen, D. (1988). Constructivism in Mathematics. Amsterdam: North-Holland.

[50]   Williams, G. (2013). Kant’s Account of Reason. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy, Sect. 1.3.