Finite Element Analysis of Von-Mises Stress Distribution in a Spherical Shell of Liquified Natural Gas (Lng) Pressure Vessels

References

[1] J. H. Kim, et al., “Preliminary Earthquake Response Analysis of 200,000 Kilolitres Large Capacity above- Ground LNG Storage Tank for the Basic Design Sec- tion,” Institute of Construction Technology, DAEWOO E&C Co., Ltd., 2005.

[2] J.-H. Kim, H.-S. Seo, K.-W. Lee and I.-S. Yoon, “Development of the World’s Largest above-Ground Full Containment LNG Storage Tank,” 23rd World Gas Conference, Amsterdam, 6 June 2006.

[3] E. M. Sosa, “Computational Buckling Analy-sis of Cylindrical Thin-Walled above-Ground Tanks,” Ph.D. Thesis, The University of Puerto Rico Mayaguez Campus, Mayaguez, June 2005.

[4] J. Dong, et al., “Numerical Calculation and Analysis of Single—Curvature Polyhedron Hydro-Bulging Process for Manufacturing Spherical Vessels,” Institute of Nuclear Energy Technology, Tsinghua University, Beijing 2005.

[5] P. Pourcel, et al., “A Seismic Post Elastic Behaviour of Spherical Tanks,” TECHNIP France and DY-NALIS France, 1999, pp. 1-14.

[6] Y. Dong and D. Redekop, “Structural and Vibrational Analysis of Liquid Storage Tanks,” Transactions, SMiRT 19, Department of Mechanical Engineering, University of Ottawa, Ottawa, 2007.

[7] E. Reissner, “On Some Problems in Shell Theory,” Proceedings, 1st Symposium on Naval Structural Mechanics, Stanford University, Pergaman Press Inc., New York, 1960.

[8] H. L. Langhaar, “Energy Methods in Applied Mechanics,” Wiley & Sons, New York, 1962.