CellBio  Vol.6 No.3 , September 2017
N-Myc Inhibition: Advances in Neuroblastoma Treatment
Abstract: Neuroblastoma (NBL) is one of the most common solid tumors and around 15% of cancer mortality in children. Amplification of the N-Myc proto-oncogene is strongly correlated with advanced disease and poor clinical outcome in NBL. Recent studies described that ubiquitin-specific protease 7 (USP7; also known as HAUSP) interacts with N-Myc, induces deubiquitination and subsequent stabilization of N-Myc that in-turn potentiates N-Myc function, and treatment with the HAUSP inhibitor (P22077) blocked such effects.
Cite this paper: Hasan, M. (2017) N-Myc Inhibition: Advances in Neuroblastoma Treatment. CellBio, 6, 27-34. doi: 10.4236/cellbio.2017.63003.

[1]   Davidoff, A.M. (2012) Neuroblastoma. Seminars in Pediatric Surgery, 21, 2-14.

[2]   Morandi, F., Corrias, M.V. and Pistoia, V. (2015) Evaluation of Bone Marrow as a Metastatic Site of Human Neuroblastoma. Annals of the New York Academy of Sciences, 1335, 23-31.

[3]   Hasan, M.K., Nafady, A., Takatori, A., Kishida, S., Ohira, M., Suenaga, Y., et al. (2013) ALK is a MYCN Target Gene and Regulates Cell Migration and Invasion in Neuroblastoma. Scientific Reports, 3, 3450.

[4]   Domingo-Fernandez, R., Watters, K., Piskareva, O., Stallings, R.L. and Bray, I. (2013) The Role of Genetic and Epigenetic Alterations in Neuroblastoma Disease Pathogenesis. Pediatric Surgery International, 29, 101-119.

[5]   Chaturvedi, N.K., McGuire, T.R., Coulter, D.W., Shukla, A., McIntyre, E.M., Sharp, J.G., et al. (2016) Improved Therapy for Neuroblastoma Using a Combination Approach: Superior Efficacy with Vismodegib and Topotecan. Oncotarget, 7, 15215-15229.

[6]   Brodeur, G.M., Seeger, R.C. and Schwab, M., Varmus, H.E., Bishop, J.M. (1984) Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science, 224, 1121-1124.

[7]   Seeger, R.C., Brodeur, G.M., Sather, H., Dalton, A., Siegel, S.E., Wong, K.Y., et al. (1985) Association of Multiple Copies of the N-myc Oncogene with Rapid Progression of Neuroblastomas. The New England Journal of Medicine, 313, 1111-1116.

[8]   Kohl, N.E., Gee, C.E. and Alt, F.W. (1984) Activated Expression of the N-myc Gene in Human Neuroblastomas and Related Tumors. Science, 226, 1335-1337.

[9]   Riley, R.D., Heney, D., Jones, D.R., Sutton, A.J., Lambert, P.C., Abrams, K.R., et al. (2004) A Systematic Review of Molecular and Biological Tumor Markers in Neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10, 4-12.

[10]   Huang, M. and Weiss, W.A. (2013) Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine, 3, a014415.

[11]   Storlazzi, C.T., Lonoce, A., Guastadisegni, M.C., Trombetta, D., D’Addabbo, P., Daniele, G., et al. (2010) Gene Amplification as Double Minutes or Homogeneously Staining Regions in Solid Tumors: Origin and Structure. Genome Research, 20, 1198-1206.

[12]   Lutz, W., Stohr, M., Schurmann, J., Wenzel, A., Lohr, A. and Schwab, M. (1996) Conditional Expression of N-Myc in Human Neuroblastoma Cells Increases Expression of Alpha-Prothymosin and Ornithine Decarboxylase and Accelerates Progression into S-Phase Early after Mitogenic Stimulation of Quiescent Cells. Oncogene, 13, 803-812.

[13]   Bernards, R., Dessain, S.K. and Weinberg, R.A. (1986) N-myc Amplification Causes Down-Modulation of MHC Class I Antigen Expression in Neuroblastoma. Cell, 47, 667-674.

[14]   Goodman, L.A., Liu, B.C., Thiele, C.J., Schmidt, M.L., Cohn, S.L., Yamashiro, J.M., et al. (1997) Modulation of N-Myc Expression Alters the Invasiveness of Neuroblastoma. Clinical & Experimental Metastasis, 15, 130-139.

[15]   Tanaka, N. and Fukuzawa, M. (2008) MYCN Downregulates Integrin Alpha1 to Promote Invasion of Human Neuroblastoma Cells. International Journal of Oncology, 33, 815-821.

[16]   Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G. and Bishop, J.M. (1997) Targeted Expression of MYCN Causes Neuroblastoma in Transgenic Mice. The EMBO Journal, 16, 2985-2995.

[17]   Charron, J., Malynn, B.A., Fisher, P., Stewart, V., Jeannotte, L., Goff, S.P., et al. (1992) Embryonic Lethality in Mice Homozygous for a Targeted Disruption of the N-Myc Gene. Genes & Development, 6, 2248-2257.

[18]   Stanton, B.R., Perkins, A.S., Tessarollo, L., Sassoon, D.A. and Parada, L.F. (1992) Loss of N-myc Function Results in Embryonic Lethality and Failure of the Epithelial Component of the Embryo to Develop. Genes & Development, 6, 2235-2247.

[19]   Sawai, S., Shimono, A., Wakamatsu, Y., Palmes, C., Hanaoka, K. and Kondoh, H. (1993) Defects of Embryonic Organogenesis Resulting from Targeted Disruption of the N-Myc Gene in the Mouse. Development, 117, 1445-1455.

[20]   Knoepfler, P.S., Cheng, P.F. and Eisenman, R.N. (2002) N-myc Is Essential during Neurogenesis for the Rapid Expansion of Progenitor Cell Populations and the Inhibition of Neuronal Differentiation. Genes & Development, 16, 2699-2712.

[21]   Brodeur, G.M. and Bagatell, R. (2014) Mechanisms of Neuroblastoma Regression. Nature Reviews Clinical Oncology, 11, 704-713.

[22]   DuBois, S.G., Kalika, Y., Lukens, J.N., Brodeur, G.M., Seeger, R.C., Atkinson, J.B., et al. (1999) Metastatic Sites in Stage IV and IVS Neuroblastoma Correlate with Age, Tumor Biology, and Survival. Journal of Pediatric Hematology/Oncology, 21, 181-189.

[23]   Yue, Z.X., Huang, C., Gao, C., Xing, T.Y., Liu, S.G., Li, X.J., et al. (2017) MYCN Amplification Predicts Poor Prognosis Based on Interphase Fluorescence in Situ Hybridization Analysis of Bone Marrow Cells in Bone Marrow Metastases of Neuroblastoma. Cancer Cell International, 17.

[24]   Kenney, A.M., Widlund, H.R. and Rowitch, D.H. (2004) Hedgehog and PI-3 Kinase Signaling Converge on Nmyc1 to Promote Cell Cycle Progression in Cerebellar Neuronal Precursors. Development, 131, 217-228.

[25]   Kang, J., Rychahou, P.G., Ishola, T.A., Mourot, J.M., Evers, B.M. and Chung, D.H. (2008) N-myc Is a Novel Regulator of PI3K-Mediated VEGF Expression in Neuroblastoma. Oncogene, 27, 3999-4007.

[26]   Chesler, L., Schlieve, C., Goldenberg, D.D., Kenney, A., Kim, G., McMillan, A., et al. (2006) Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma. Cancer Research, 66, 8139-8146.

[27]   Johnsen, J.I., Segerstrom, L., Orrego, A., Elfman, L., Henriksson, M., Kagedal, B., et al. (2008) Inhibitors of Mammalian Target of Rapamycin Downregulate MYCN Protein Expression and Inhibit Neuroblastoma Growth in Vitro and in Vivo. Oncogene, 27, 2910-2922.

[28]   Chanthery, Y.H., Gustafson, W.C., Itsara, M., Persson, A., Hackett, C.S., Grimmer, M., et al. (2012) Paracrine Signaling through MYCN Enhances Tumor-Vascular Interactions in Neuroblastoma. Science Translational Medicine, 4, 115ra113.

[29]   Herceg, Z. and Wang, Z.Q. (2001) Functions of poly(ADP-ribose) Polymerase (PARP) in DNA Repair, Genomic Integrity and Cell Death. Mutation Research, 477, 97-110.

[30]   Jubin, T., Kadam, A., Jariwala, M., Bhatt, S., Sutariya, S., Gani, A.R., et al. (2016) The PARP Family: Insights into Functional Aspects of Poly (ADP-ribose) Polymerase-1 in Cell Growth and Survival. Cell Proliferation, 49, 421-437.

[31]   De la Lastra, C.A., Villegas, I. and Sanchez-Fidalgo, S. (2007) Poly(ADP-ribose) Polymerase Inhibitors: New Pharmacological Functions and Potential Clinical Implications. Current Pharmaceutical Design, 13, 933-962.

[32]   Colicchia, V., Petroni, M., Guarguaglini, G., Sardina, F., Sahun-Roncero, M., Carbonari, M., et al. (2017) PARP Inhibitors Enhance Replication Stress and Cause Mitotic Catastrophe in MYCN-Dependent Neuroblastoma. Oncogene.

[33]   Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198.

[34]   Brahmer, J.R., Tykodi, S.S., Chow, L.Q., Hwu, W.J., Topalian, S.L., Hwu, P., et al. (2012) Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. The New England Journal of Medicine, 366, 2455-2465.

[35]   Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of anti-PD-1 Antibody in Cancer. The New England Journal of Medicine, 366, 2443-2454.

[36]   Zhang, B. (2010) CD73: A Novel Target for Cancer Immunotherapy. Cancer Research, 70, 6407-6411.

[37]   Hoskin, D.W., Mader, J.S., Furlong, S.J., Conrad, D.M. and Blay, J. (2008) Inhibition of T Cell and Natural Killer Cell Function by Adenosine and Its Contribution to Immune Evasion by Tumor Cells (Review). International Journal of Oncology, 32, 527-535.

[38]   Mosser, D.M. and Zhang, X. (2008) Interleukin-10: New Perspectives on an Old Cytokine. Immunological Reviews, 226, 205-218.

[39]   Thomas, D.A. and Massague, J. (2005) TGF-Beta Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell, 8, 369-380.

[40]   Dondero, A., Pastorino, F., Della Chiesa, M., Corrias, M.V., Morandi, F., Pistoia, V., et al. (2016) PD-L1 Expression in Metastatic Neuroblastoma as an Additional Mechanism for Limiting Immune Surveillance. Oncoimmunology, 5, e1064578.

[41]   Ansell, S.M., Lesokhin, A.M., Borrello, I., Halwani, A., Scott, E.C., Gutierrez, M., et al. (2015) PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. The New England Journal of Medicine, 372, 311-319.

[42]   Kopp, L.M. and Katsanis, E. (2016) Targeted Immunotherapy for Pediatric Solid Tumors. Oncoimmunology, 5, e1087637.

[43]   Melaiu, O., Mina, M., Chierici, M., Boldrini, R., Jurman, G., Romania, P., et al. (2017) PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research.

[44]   Holowaty, M.N., Sheng, Y., Nguyen, T., Arrowsmith, C. and Frappier, L. (2003) Protein Interaction Domains of the Ubiquitin-Specific Protease, USP7/HAUSP. The Journal of Biological Chemistry, 278, 47753-47761.

[45]   Nicholson, B. and Suresh Kumar, K.G. (2011) The Multifaceted Roles of USP7: New Therapeutic Opportunities. Cell Biochemistry and Biophysics, 60, 61-68.

[46]   Van der Horst, A., de Vries-Smits, A.M., Brenkman, A.B., van Triest, M.H., van den Broek, N., Colland, F., et al. (2006) FOXO4 Transcriptional Activity Is Regulated by Monoubiquitination and USP7/HAUSP. Nature Cell Biology, 8, 1064-1073.

[47]   Song, M.S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., et al. (2008) The Deubiquitinylation and Localization of PTEN Are Regulated by a HAUSP-PML Network. Nature, 455, 813-817.

[48]   Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., et al. (2010) DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination. Science Signaling, 3, ra80.

[49]   Faesen, A.C., Dirac, A.M., Shanmugham, A., Ovaa, H., Perrakis, A. and Sixma, T.K. (2011) Mechanism of USP7/HAUSP Activation by Its C-Terminal Ubiquitin-Like Domain and Allosteric Regulation by GMP-Synthetase. Molecular Cell, 44, 147-159.

[50]   Pfoh, R., Lacdao, I.K. and Saridakis, V. (2015) Deubiquitinases and the New Therapeutic Opportunities Offered to Cancer. Endocrine-Related Cancer, 22, T35-T54.

[51]   Tavana, O., Li, D., Dai, C., Lopez, G., Banerjee, D., Kon, N., et al. (2016) HAUSP Deubiquitinates and Stabilizes N-Myc in Neuroblastoma. Nature Medicine.