JWARP  Vol.9 No.12 , November 2017
Water Quality and Ecotoxicity Assessment in Surface Waters from Cubatão River and Surroundings, São Paulo, Brazil
Abstract: The monitoring of water bodies means the attempt of protecting vulnerable groups of organisms inhabiting streams and rivers. Industrial and domestic discharges may worsen the water quality and affect biological balance, structure and the functioning of the ecosystem. Cubatão City, is one of the largest industrial centers in Brazil and in Latin America, where the constant discharge of effluents into Cubatão River and its tributaries caused a degradation scenario in the hydrographic basin of the region. The objective of this study was to evaluate the acute and chronic effects of surface water from Cubatão River and two of its tributaries (Perequê and Pilões) by ecotoxicological assays. In addition, physical chemical parameters were analyzed. Ceriodaphnia dubia and Vibrio fischeri were exposed-organisms during the studied period. The study was conducted between 2010 and 2011 in four campaigns and nine sites along the basin of Cubatão River. The ecotoxicity was measured by Vibrio fischeri bioluminescence, EC50 values ranging from 31.25% to 71.61%. In contrast, based on a bioequivalence t-test statistical analysis, the results obtained with Ceriodaphnia dubia revealed no toxicity in the sampling sites. A critical analysis of raw data of luminescence was carried out showing higher values during the 2nd campaign. From the numbers obtained for physical-chemical parameters P5 was far the worst due to chlorides, hardness and conductivity. From the Pearson correlation analysis carried out with toxicity to V. fischeri and the physical chemical parameters, the dissolved oxygen in water resulted in a moderate positive correlation. Sediment contamination was also demonstrated in the region.
Cite this paper: Garcia, V. , Matsushita, E. , Mesquita, L. , Fávaro, D. and Borrely, S. (2017) Water Quality and Ecotoxicity Assessment in Surface Waters from Cubatão River and Surroundings, São Paulo, Brazil. Journal of Water Resource and Protection, 9, 1510-1525. doi: 10.4236/jwarp.2017.912096.

[1]   Lamparelli, M.L., Costa, M.P., Prósperi, V.A., Bevilácqua, J.E., Araújo, R.P.A., Eysink, G.G.L. and Pompéia, S. (2001) Sistema Estuarino de Santos e São Vicente. In: Relatório Técnico CETESB, São Paulo.

[2]   Silva, P.S.C., Mazzilli, B. P. and Fávaro, D.I.T. (2006) Distribution of Radionuclides and Elements in Cubatão River sediments. Journal of Radioanalytical and NuclearChemistry, 269, 767-771.

[3]   Silva, P.S.C., Damatto, S.R., Maldonado, C., Fávaro, D.I.T. and Mazzilli, B.P. (2011) Metal Distribution in Sediment Cores from São Paulo State Coast, Brazil. Marine Pollution Bulletin, 62, 1130-1139.

[4]   Luiz-Silva,W., Matos, R.H.R., Kristoch, G.C. and Machado, W. (2006) Variabilidade espacial e sazonal da concentração de elementos-traço em sedimentos do sistema estuarino Santos-Cubatão. Química Nova, 29, 256-263.

[5]   Kim, B.S.M., Salaroli, A.B., Ferreira, P.A.L., Sartoretto, J.R., Mahiques, M.M. and Figueira, R.C.L. (2016) Spatial Distribution and Enrichment Assessment of Heavy Metals in Surface Sediments from Baixada Santista, Southeastern Brazil. Marine Pollution Bulletin, 103, 333-338.

[6]   Kirschbaum, A.A., Seriani, R., Pereira, C.D.S., Assunção, A., Abessa, D.M.S., Rotundo, M.M. and Ranzani-Paiva, M.J.T. (2009) Cytogenotoxicity Biomarkers in Fat Snook Centropomus Parallelus from Cananéia and São Vicente Estuaries, SP, Brazil. Genetics and Molecular Biology, 32, 151-154.

[7]   Seriani. R., Abessa, D.M.S., Pereira, C.D.S., Kirschbaum, A.A., Assunção, A. and Ranzani-Paiva, M.J.T. (2013) Influence of Seasonality and Pollution on the Hematological Parameters of the Estuarine Fish Centropomus Parallelus. Brazilian Journal of Oceanography, 61, 105-111.

[8]   Buruaem, L.M., Castro, I.B., Hortellani, M.A., Taniguchi, S., Fillmann, G., Sasaki, S.T., Petti, M.A.V., Sarkis, J.E.S., Bícego, M.C., Maranho, L.A., Davanso, M.B., Nonato, E.F., Cesar, A., Costa-Lotufo, L.V. and Abessa, D.M.S. (2013) Integrated Quality Assessment of Sediments from Harbour Areas in Santos-São Vicente Estuarine System, Southern Brazil. Estuarine, Coastal and Shelf Science, 130, 179-189.

[9]   Martins, C.C., Bícego, M.C., Mahiques, M.M., Figueira, R.C.L., Tessler, M.G. and Montane, R.C. (2010) Depositional History of Sedimentary Linear Alkylbenzenes (LABs) in a Large South American Industrial Coastal Area (Santos Estuary, Southeastern Brazil). Environmental Pollution, 158, 3355-3364.

[10]   American Public Health Association (APHA) (2005) Standard Methods for the Examination of Water & Wastewater. 21st Edition. Centennial Edition. In: Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E., Eds., NW, Washington, DC, 20001-3710.

[11]   Fávaro, D.I.T., Alegre, G.F., Borrely, S.I., Vukan, W., Vieira, A.S. and Oliveira, S.M.B. (2014) Major and Trace Element Assessment of Tiete River SEDIMENTS, São Paulo, Brazil. Journal of Radioanalytical and Nuclear Chemistry, 299, 977-805.

[12]   ABNT. Associação Brasileira de Normas Técnicas (2006) Ecotoxicologia aquática –Determinação do efeito inibitório de amostras de água sobre a emissão de luz de Vibrio fischeri. ABNT NBR 15411-2, Rio de Janeiro.

[13]   Bullich, A.A. (1992) A Practical and Reliable Method for Monitoring the Toxicity of Aquatic Samples. Process Biochemistry, 17, 45-47.

[14]   ABNT. Associação Brasileira de Normas Técnicas (2005) Ecotoxicologia aquática—Toxicidade aguda—Método de ensaio com Ceriodaphnia spp (Cladocera, Crustacea). ABNT NBR 13373. Rio de Janeiro.

[15]   Gulley, D. and Toxstat 3.5. (1996) West Inc. University of Wyoming. Cheyenne, Wyoming.

[16]   Bertoletti, E., Buratini, S.V., Prospéri, V.A.; Araújo, R.P.A. and Werner, L.I. (2007) Selection of Relevant Effect Levels for Using Bioequivalence Hypothesis Testing. Journal of the Brazilian Society of Ecotoxicology, 2, 139-145.

[17]   CONAMA Conselho Nacional do Meio Ambiente (2005) Ministério do Meio Ambiente. Resolução N 357, march 17.

[18]   Pusceddu, F.H., Alegre, G.F., Pereira, C.D.S. and Cesar, A. (2007) Avaliação da Toxicidade do Sedimento do Complexo Estuarino de Santos Empregando Ouriços-do-mar Lytechinus variegatus (Echinoidea: Echinodermata). Journal of the Brazilian Society of Ecotoxicology, 2, 237-242.

[19]   Moreira, L.B., Cesar, A., Cortez, F.S., Pereira, C.D.S. and Morais, R.D. (2008) Toxicidade nos rios Cubatão e Quilombo, Cubatão (SP). Revista Ceciliana, 30, 31-44.

[20]   Garcia, V.S.G., Mesquita, L.C.A., Santos, D.R.A. and Borrely, S.I. (2014) Toxicity Assessment into Sediments from Cubatão River-SP. O Mundo da Saúde, 38, 56-65.

[21]   CETESB Companhia de Tecnologia de Saneamento Ambiental (2016) Relatório de Qualidade das águas Interiores no Estado de São Paulo, 2015. São Paulo.

[22]   Power, E.A. and Chapman, P.M. (1992) Assessing Sediment Quality. In: Burton Jr., G.A., Ed., Sediment Toxicity Assessment, Lewis Publishers, Boca Raton.

[23]   CONAMA Conselho Nacional do Meio Ambiente (2004) Ministério do Meio Ambiente. Resolução N 344, 25 March.


[25]   CCME Canadian Environmental Quality Guidelines.

[26]   Wedepohl, K.H. (1995) The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59, 1217-1232.

[27]   Geissen, V., Mol, H., Klumpp, E., Umlaug, G., Nadal, M., Ploeg, M.V.D., Zee, S.E.A.T.M.V. and Ritsema, C. J. (2015) Emerging Pollutants in the Environment: A Challenge for Water Resource Management. International Soil and Water Conservation Research, 3, 57-65.

[28]   Fuhrimann, S., Stalder, M., Winkler, M.S., Niwagaba, C.B., Babu, M., Masaba, G., Kabatereine, N.B., Halage, A.A., Schneeberger, P.H.H., Utzinger, J. and Cissé, G. (2015) Microbial and Chemical Contamination of Water, Sediment and Soil in the Nakivubo Wetland Area in Kampala, Uganda. Environmental Monitoring and Assessment, 187, 475.

[29]   Jablońska-Czapla, M., Nocoń, K., Szopa, S. and Lyko, A. (2016) Impact of the Pb and Zn Ore Mining Industry on the Pollution of the Biala Przemsza River, Poland. Environmental Monitoring and Assessment, 188, 262.

[30]   Rakotondrabe, F., Ngoupayou1, J.R.N., Mfonka, Z., Rasolomanana, E.H., Abolo, A.J.N., Asone, B.L., Ako, A.A. and Rakotondrabe, M.H. (2017) Assessment of Surface Water Quality of Bétaré-Oya Gold Mining Area (East-Cameroon). Journal of Water Resource and Protection, 9, 960-984.

[31]   Silva, E., Pereira, A.C., Estalagem, S.P., Moreira-Santos, M., Ribeiro, R. and Cerejeira, M.J. (2012) Assessing the Quality of Freshwaters in a Protected Area within the Tagus River Basin District (Central Portugal). Journal of Environmental Quality, 41, 1413-1426.

[32]   Osman, A.G.M. and Kloas, W. (2010) Water Quality and Heavy Metal Monitoring in Water, Sediments, and Tissues of the African Catfish Clarias Gariepinus (Burchell, 1822) from the River Nile, Egypt. Journal of Environmental Protection, 1, 389-400.

[33]   Scott, P.D., Bartkow, M., Blockwell, S.J., Coleman, H.M., Khan, S.J., Lim, R., McDonald, J.A., Nice, H., Nugegoda, D., Pettigrove, V., Tremblay, L.A., Warne, M.S. and Leusch, F.D. (2014) A National Survey of Trace Organic Contaminants in Australian Rivers. Journal Environment Quality, 43, 1702-1712.

[34]   Von der Ohe, P.C., Dulio, V., Slobodnik, J., De Deckere, E., Kuhne, R. and Ebert, R.U. (2011) A New Risk Assessment Approach for the Prioritization of 500 Classical and Emerging Organic Microcontaminants as Potential River Basin Specific Pollutants under the European Water Framework Directive. Science of the Total Environment, 409, 2064-2077.