Back
 AiM  Vol.7 No.11 , November 2017
Multilocus Sequence Analysis of Root Nodule Bacteria Associated with Lupinus spp. and Glycine max
Abstract:
Lupinus is known to form endophytic associations with both nodulating and non-nodulating bacteria. In this study, multilocus sequence analysis (MLSA) was used to analyze phylogenetic relationships among root nodule bacteria associated with Lupinus and soybean. Out of 17 bacterial strains analyzed, 13 strains isolated from root nodules of Lupinus spp. were obtained from the National Rhizobium Germplasm Resource Collection, USDA. Additionally, two strains of root-nodule bacteria isolated each from native lupinus and domestic soybean were examined. Sequences of the 16S rRNA gene and three house-keeping genes (atpD, dnaK and glnII) were used. All the reference genes were retrieved from the existing complete genome sequences only. The clustering of 12 of the strains was consistent among single and concatenated gene trees, but not USDA strains 3044, 3048, 3504, 3715, and 3060. According to the concatenated phylogeny, we suggest that USDA 3040, 3042, 3044, 3048, 3051, 3060, 3504, 3709 and 3715 are Bradyrhizobium, USDA 3063 and 3717 are Mesorhizobium, USDA 3043 is Burkholderia and USDA 3057a is Microvirga. The two strains isolated from native lupines in this study are Burkholderia and Rhizobium, whereas the two from domestic soybean are Bradyrhizobium. This study emphasizes the robustness of MLSA, the diversity of bacterial species that are capable of nodulating lupine and the substantial capability of Burkholderia spp. to colonize lupine root nodules.
Cite this paper: Beligala, D. , Michaels, H. , Devries, M. and Phuntumart, V. (2017) Multilocus Sequence Analysis of Root Nodule Bacteria Associated with Lupinus spp. and Glycine max. Advances in Microbiology, 7, 790-812. doi: 10.4236/aim.2017.711063.
References

[1]   Duran, D., Rey, L., Sanchez-Canizares, C., Navarro, A., Imperial, J. and Ruiz-Argueso, T. (2013) Genetic Diversity of Indigenous Rhizobial Symbionts of the Lupinus mariae-josephae Endemism from Alkaline-Limed Soils within Its Area of Distribution in Eastern Spain. Systematic and Applied Microbiology, 36, 128-136.
https://doi.org/10.1016/j.syapm.2012.10.008

[2]   Stepkowski, T., Czaplińska, M., Miedzinska, K. and Moulin, L. (2003) The Variable Part of the dnaK Gene as an Alternative Marker for Phylogenetic Studies of Rhizobia and Related Alpha Proteobacteria. Systematic and Applied Microbiology, 26, 483-494.
https://doi.org/10.1078/072320203770865765

[3]   Stepkowski, T., Moulin, L., Krzyzanska, A., McInnes, A., Law, I.J. and Howieson, J. (2005) European Origin of Bradyrhizobium Populations Infecting Lupins and Serradella in Soils of Western Australia and South Africa. Applied and Environmental Microbiology, 71, 7041-7052.
https://doi.org/10.1128/AEM.71.11.7041-7052.2005

[4]   Stepkowski, T., Hughes, C.E., Law, I.J., Markiewicz, L., Gurda, D., Chlebicka, A., et al. (2007) Diversification of Lupine Bradyrhizobium Strains: Evidence from Nodulation Gene Trees. Applied and Environmental Microbiology, 73, 3254-3264.
https://doi.org/10.1128/AEM.02125-06

[5]   Stepkowski, T., Zak, M., Moulin, L., Króliczak, J., Golińska, B., Narozna, D., et al. (2011) Bradyrhizobium canariense and Bradyrhizobium japonicum Are the Two Dominant Rhizobium Species in Root Nodules of Lupin and Serradella Plants Growing in Europe. Systematic and Applied Microbiology, 34, 368-375.
https://doi.org/10.1016/j.syapm.2011.03.002

[6]   Trujillo, M.E., Willems, A., Abril, A., Planchuelo, A.M., Rivas, R., Ludena, D., et al. (2005) Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Applied and Environmental Microbiology, 71, 1318-1327.
https://doi.org/10.1128/AEM.71.3.1318-1327.2005

[7]   Trujillo, M.E., Kroppenstedt, R.M., Fernández-Molinero, C., Schumann, P. and Martínez-Molina, E. (2007) Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., Isolated from Root Nodules of Lupinus angustifolius. International Journal of Systematic and Evolutionary Microbiology, 57, 2799-2804.
https://doi.org/10.1099/ijs.0.65192-0

[8]   Ardley, J.K., Parker, M.A., De Meyer, S., O’Hara, G.W., Reeve, W.G., Yates, R.J., et al. (2010) Species of Microvirga Are Novel Alpha-Proteobacterial Root Nodule Bacteria That Specifically Nodulate Lotononis angolensis and Lupinus texensis.

[9]   Ardley, J.K., Parker, M.A., De Meyer, S.E., Trengove, R.D., O’Hara, G.W., Reeve, W.G., et al. (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. Are Alphaproteobacterial Root-Nodule Bacteria That Specifically Nodulate and Fix Nitrogen with Geographically and Taxonomically Separate Legume Hosts. International Journal of Systematic and Evolutionary Microbiology, 62, 2579-2588.
https://doi.org/10.1099/ijs.0.035097-0

[10]   De Meyer, S.E. and Willems, A. (2012) Multilocus Sequence Analysis of Bosea Species and Description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., Isolated from Legumes. International Journal of Systematic and Evolutionary Microbiology, 62, 2505-2510.
https://doi.org/10.1099/ijs.0.035477-0

[11]   Flores-Félix, J.D., Carro, L., Ramírez-Bahena, M.-H., Tejedor, C., Igual, J.M., Peix, A., et al. (2014) Cohnella lupini sp. nov., an Endophytic Bacterium Isolated from Root Nodules of Lupinus albus. International Journal of Systematic and Evolutionary Microbiology, 64, 83-87.
https://doi.org/10.1099/ijs.0.050849-0

[12]   Reeve, W., Parker, M., Tian, R., Goodwin, L., Teshima, H., Tapia, R., et al. (2014) Genome Sequence of Microvirga lupini Strain LUT6T, a Novel Lupinus Alphaproteobacterial Microsymbiont from Texas. Standards in Genomic Sciences, 9, 1159.
https://doi.org/10.4056/sigs.5249382

[13]   Msaddak, A., Rejili, M., Durán, D., Rey, L., Imperial, J., Palacios, J.M., et al. (2017) Members of Microvirga and Bradyrhizobium Genera Are Native Endosymbiotic Bacteria Nodulating Lupinus luteus in Northern Tunisian Soils. FEMS Microbiology Ecology, 93, fix068.
https://doi.org/10.1093/femsec/fix068

[14]   Carro, L., Flores-Félix, J.D., Ramírez-Bahena, M.-H., García-Fraile, P., Martínez-Hidalgo, P., Igual, J.M., et al. (2014) Paenibacillus lupini sp. nov., Isolated from Nodules of Lupinus albus. International Journal of Systematic and Evolutionary Microbiology, 64, 3028-3033.
https://doi.org/10.1099/ijs.0.060830-0

[15]   Compant, S., Nowak, J., Coenye, T., Clément, C. and Ait Barka, E. (2008) Diversity and Occurrence of Burkholderia spp. in the Natural Environment. FEMS Microbiology Reviews, 32, 607-626.
https://doi.org/10.1111/j.1574-6976.2008.00113.x

[16]   Weisskopf, L., Heller, S. and Eberl, L. (2011) Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots. Applied and Environmental Microbiology, 77, 7715-7720.
https://doi.org/10.1128/AEM.05845-11

[17]   Willems, A. and Collins, M.D. (1993) Phylogenetic Analysis of Rhizobia and Agrobacteria Based on 16S rRNA Gene Sequences. International Journal of Systematic Bacteriology, 43, 305-313.
https://doi.org/10.1099/00207713-43-2-305

[18]   Janda, J.M. and Abbott, S.L. (2007) 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. Journal of Clinical Microbiology, 45, 2761-2764.
https://doi.org/10.1128/JCM.01228-07

[19]   Gevers, D., Cohan, F.M., Lawrence, J.G., Spratt, B.G., Coenye, T., Feil, E.J., et al. (2005) Re-Evaluating Prokaryotic Species. Nature Reviews Microbiology, 3, 733-739.
https://doi.org/10.1038/nrmicro1236

[20]   Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P. and Willems, A. (2008) Advantages of Multilocus Sequence Analysis for Taxonomic Studies: A Case Study using 10 Housekeeping Genes in the Genus Ensifer (Including Former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology, 58, 200-214.
https://doi.org/10.1099/ijs.0.65392-0

[21]   Menna, P., Barcellos, F.G. and Hungria, M. (2009) Phylogeny and Taxonomy of a Diverse Collection of Bradyrhizobium Strains Based on Multilocus Sequence Analysis of the 16S rRNA Gene, ITS Region and glnII, recA, atpD and dnaK Genes. International Journal of Systematic and Evolutionary Microbiology, 59, 2934-2950.
https://doi.org/10.1099/ijs.0.009779-0

[22]   Rivas, R., Martens, M., De Lajudie, P. and Willems, A. (2009) Multilocus Sequence Analysis of the Genus Bradyrhizobium. Systematic and Applied Microbiology, 32, 101-110.
https://doi.org/10.1016/j.syapm.2008.12.005

[23]   Rajendhran, J. and Gunasekaran, P. (2011) Microbial Phylogeny and Diversity: Small Subunit Ribosomal RNA Sequence Analysis and Beyond. Microbiological Research, 166, 99-110.
https://doi.org/10.1016/j.micres.2010.02.003

[24]   Granada, C.E., Beneduzi, A., Lisboa, B.B., Turchetto-Zolet, A.C., Vargas, L.K. and Passaglia, L.M.P. (2015) Multilocus Sequence Analysis Reveals Taxonomic Differences among Bradyrhizobium sp. Symbionts of Lupinus albescens Plants Growing in Arenized and Non-Arenized Areas. Systematic and Applied Microbiology, 38, 323-329.
https://doi.org/10.1016/j.syapm.2015.03.009

[25]   Azevedo, H., Lopes, F.M., Silla, P.R. and Hungria, M. (2015) A Database for the Taxonomic and Phylogenetic Identification of the Genus Bradyrhizobium using Multilocus Sequence Analysis. BMC Genomics, 16, S10.
https://doi.org/10.1186/1471-2164-16-S5-S10

[26]   Gaunt, M.W., Turner, S.L., Rigottier-Gois, L., Lloyd-Macgilp, S.A. and Young, J.P. (2001) Phylogenies of atpD and recA Support the Small Subunit rRNA-Based Classification of Rhizobia. International Journal of Systematic and Evolutionary Microbiology, 51, 2037-2048.
https://doi.org/10.1099/00207713-51-6-2037

[27]   Christensen, H., Kuhnert, P., Olsen, J.E. and Bisgaard, M. (2004) Comparative Phylogenies of the Housekeeping Genes atpD, infB and rpoB and the 16S rRNA Gene within the Pasteurellaceae. International Journal of Systematic and Evolutionary Microbiology, 54, 1601-1609.
https://doi.org/10.1099/ijs.0.03018-0

[28]   Batista, L., Tomasco, I., Lorite, M.J., Sanjuán, J. and Monza, J. (2013) Diversity and Phylogeny of Rhizobial Strains Isolated from Lotus uliginosus Grown in Uruguayan Soils. Applied Soil Ecology, 66, 19-28.
https://doi.org/10.1016/j.apsoil.2013.01.009

[29]   Chahboune, R., Carro, L., Peix, A., Ramirez-Bahena, M.H., Barrijal, S., Velazquez, E., et al. (2012) Bradyrhizobium rifense sp. nov. Isolated from Effective Nodules of Cytisus villosus Grown in the Moroccan Rif. Systematic and Applied Microbiology, 35, 302-305.
https://doi.org/10.1016/j.syapm.2012.06.001

[30]   Behrmann, I., Hillemann, D., Puhler, A., Strauch, E. and Wohlleben, W. (1990) Overexpression of a Streptomyces viridochromogenes Gene (glnII) Encoding a Glutamine Synthetase Similar to Those of Eucaryotes Confers Resistance against the Antibiotic Phosphinothricyl-Alanyl-Alanine. Journal of Bacteriology, 172, 5326-5334.
https://doi.org/10.1128/jb.172.9.5326-5334.1990

[31]   Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., et al. (2012) IMG: The Integrated Microbial Genomes Database and Comparative Analysis System. Nucleic Acids Research, 40, D115-D122.
https://doi.org/10.1093/nar/gkr1044

[32]   Deng, Z.S., Zhao, L.F., Kong, Z.Y., Yang, W.Q., Lindstrom, K., Wang, E.T., et al. (2011) Diversity of Endophytic Bacteria within Nodules of the Sphaerophysa salsula in Different Regions of Loess Plateau in China. FEMS Microbiology Ecology, 76, 463-475.
https://doi.org/10.1111/j.1574-6941.2011.01063.x

[33]   Van Berkum, P. (1990) Evidence for a Third Uptake Hydrogenase Phenotype among the Soybean Bradyrhizobia. Applied and Environmental Microbiology, 56, 3835-3841.

[34]   Nagata, Y., Matsuda, M., Komatsu, H., Imura, Y., Sawada, H., Ohtsubo, Y., et al. (2005) Organization and Localization of the dnaA and dnaK Gene Regions on the Multichromosomal Genome of Burkholderia multivorans ATCC 17616. Journal of Bioscience and Bioengineering, 99, 603-610.
https://doi.org/10.1263/jbb.99.603

[35]   López-López, A., Rogel, M.A., Ormeno-Orrillo, E., Martínez-Romero, J. and Martínez-Romero, E. (2010) Phaseolus vulgaris Seed-Borne Endophytic Community with Novel Bacterial Species such as Rhizobium endophyticum sp. nov. Systematic and Applied Microbiology, 33, 322-327.
https://doi.org/10.1016/j.syapm.2010.07.005

[36]   Edgar, R.C. (2004) MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Research, 32, 1792-1797.
https://doi.org/10.1093/nar/gkh340

[37]   Vaidya, G., Lohman, D.J. and Meier, R. (2011) Sequence Matrix: Concatenation Software for the Fast Assembly of Multi-Gene Datasets with Character Set and Codon Information. Cladistics, 27, 171-180.
https://doi.org/10.1111/j.1096-0031.2010.00329.x

[38]   Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
https://doi.org/10.1093/molbev/mst197

[39]   Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., et al. (2013) GenBank. Nucleic Acids Research, 41, D36-D42.
https://doi.org/10.1093/nar/gks1195

[40]   Tringe, S.G. and Hugenholtz, P. (2008) A Renaissance for the Pioneering 16S rRNA Gene. Current Opinion in Microbiology, 11, 442-446.
https://doi.org/10.1016/j.mib.2008.09.011

[41]   Maidak, B.L., Olsen, G.J., Larsen, N., Overbeek, R., McCaughey, M.J. and Woese, C.R. (1997) The RDP (Ribosomal Database Project). Nucleic Acids Research, 25, 109-111.
https://doi.org/10.1093/nar/25.1.109

[42]   Teyssier, C., Marchandin, H., Simeon De Buochberg, M., Ramuz, M. and Jumas-Bilak, E. (2003) Atypical 16S rRNA Gene Copies in Ochrobactrum intermedium Strains Reveal a Large Genomic Rearrangement by Recombination between rrn Copies. Journal of Bacteriology, 185, 2901-2909.
https://doi.org/10.1128/JB.185.9.2901-2909.2003

[43]   Kitahara, K. and Miyazaki, K. (2013) Revisiting Bacterial Phylogeny: Natural and Experimental Evidence for Horizontal Gene Transfer of 16S rRNA. Mobile Genetic Elements, 3, e24210.
https://doi.org/10.4161/mge.24210

[44]   Eardly, B.D., Wang, F.-S. and Van Berkum, P. (1996) Corresponding 16S rRNA Gene Segments in Rhizobiaceae and Aeromonas Yield Discordant Phylogenies. Plant and Soil, 186, 69-74.
https://doi.org/10.1007/BF00035057

[45]   Schouls, L.M., Schot, C.S. and Jacobs, J.A. (2003) Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group. Journal of Bacteriology, 185, 7241-7246.
https://doi.org/10.1128/JB.185.24.7241-7246.2003

[46]   Van Berkum, P., Terefework, Z., Paulin, L., Suomalainen, S., Lindstrom, K. and Eardly, B.D. (2003) Discordant Phylogenies within the rrn Loci of Rhizobia. Journal of Bacteriology, 185, 2988-2998.
https://doi.org/10.1128/JB.185.10.2988-2998.2003

[47]   Lemaire, B., Van Cauwenberghe, J., Chimphango, S., Stirton, C., Honnay, O., Smets, E., et al. (2015) Recombination and Horizontal Transfer of Nodulation and ACC Deaminase (acdS) Genes within Alpha-and Betaproteobacteria Nodulating Legumes of the Cape Fynbos Biome. FEMS Microbiology Ecology, 91.

[48]   Eardly, B.D., Nour, S.M., van Berkum, P. and Selander, R.K. (2005) Rhizobial 16S rRNA and dnaK Genes: Mosaicism and the Uncertain Phylogenetic Placement of Rhizobium galegae. Applied and Environmental Microbiology, 71, 1328-1335.
https://doi.org/10.1128/AEM.71.3.1328-1335.2005

[49]   Klappenbach, J.A., Saxman, P.R., Cole, J.R. and Schmidt, T.M. (2001) rrndb: The Ribosomal RNA Operon Copy Number Database. Nucleic Acids Research, 29, 181-184.
https://doi.org/10.1093/nar/29.1.181

[50]   Wang, Y., Zhang, Z. and Ramanan, N. (1997) The Actinomycete Thermobispora bispora Contains Two Distinct Types of Transcriptionally Active 16S rRNA Genes. Journal of Bacteriology, 179, 3270-3276.
https://doi.org/10.1128/jb.179.10.3270-3276.1997

[51]   Kundig, C., Beck, C., Hennecke, H. and Gottfert, M. (1995) A Single rRNA Gene Region in Bradyrhizobium japonicum. Journal of Bacteriology, 177, 5151-5154.
https://doi.org/10.1128/jb.177.17.5151-5154.1995

[52]   De Bruijn, F.J. (2015) Biological Nitrogen Fixation. In: Principles of Plant-Microbe Interactions, Springer International Publishing, 215-224.

[53]   Willems, A., Coopman, R. and Gillis, M. (2001) Phylogenetic and DNA-DNA Hybridization Analyses of Bradyrhizobium Species. International Journal of Systematic and Evolutionary Microbiology, 51, 111-117.
https://doi.org/10.1099/00207713-51-1-111

[54]   Vinuesa, P., Silva, C., Werner, D. and Martínez-Romero, E. (2005) Population Genetics and Phylogenetic Inference in Bacterial Molecular Systematics: The Roles of Migration and Recombination in Bradyrhizobium Species Cohesion and Delineation. Molecular Phylogenetics and Evolution, 34, 29-54.
https://doi.org/10.1016/j.ympev.2004.08.020

[55]   Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., et al. (2005) Bradyrhizobium canariense sp. nov., an Acid-Tolerant Endosymbiont That Nodulates Endemic Genistoid Legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies Beta. International Journal of Systematic and Evolutionary Microbiology, 55, 569-575.
https://doi.org/10.1099/ijs.0.63292-0

[56]   Chahboune, R., Carro, L., Peix, A., Barrijal, S., Velázquez, E. and Bedmar, E.J. (2011) Bradyrhizobium cytisi sp. nov., Isolated from Effective Nodules of Cytisus villosus. International Journal of Systematic and Evolutionary Microbiology, 61, 2922-2927.
https://doi.org/10.1099/ijs.0.027649-0

[57]   Kawaguchi, A. (2011) Genetic Diversity of Rhizobium vitis Strains in Japan Based on Multilocus Sequence Analysis of pyrG, recA and rpoD. Journal of General Plant Pathology, 77, 299-303.
https://doi.org/10.1007/s10327-011-0333-y

[58]   Lu, J., Kang, L., He, X. and Xu, D. (2011) Multilocus Sequence Analysis of the Rhizobia from Five Woody Legumes in Southern China. African Journal of Microbiology Research, 5, 5343-5353.

[59]   Zhang, Y.M., Li Jr, Y., Chen, W.F., Wang, E.T., Sui, X.H., Li, Q.Q., et al. (2012) Bradyrhizobium huanghuaihaiense sp. nov., an Effective Symbiotic Bacterium Isolated from Soybean (Glycine max L.) Nodules. International Journal of Systematic and Evolutionary Microbiology, 62, 1951-1957.
https://doi.org/10.1099/ijs.0.034546-0

[60]   Degefu, T., Wolde-Meskel, E., Liu, B., Cleenwerck, I., Willems, A. and Frostegard, A. (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., Isolated from Root Nodules of Different Agroforestry Legume Trees. International Journal of Systematic and Evolutionary Microbiology, 63, 1746-1753.
https://doi.org/10.1099/ijs.0.044032-0

[61]   Wang, J.Y., Wang, R., Zhang, Y.M., Liu, H.C., Chen, W.F., Wang, E.T., et al. (2013) Bradyrhizobium daqingense sp. nov., Isolated from Soybean Nodules. International Journal of Systematic and Evolutionary Microbiology, 63, 616-624.
https://doi.org/10.1099/ijs.0.034280-0

[62]   Xu, K.W., Penttinen, P., Chen, Y.X., Zou, L., Zhou, T., Zhang, X., et al. (2013) Polyphasic Characterization of Rhizobia Isolated from Leucaena leucocephala from Panxi, China. World Journal of Microbiology and Biotechnology, 29, 2303-2315.
https://doi.org/10.1007/s11274-013-1396-z

[63]   Delamuta, J.R.M., Ribeiro, R.A., Ormeño-Orrillo, E., Melo, I.S., Martínez-Romero, E. and Hungria, M. (2013) Polyphasic Evidence Supporting the Reclassification of Bradyrhizobium japonicum Group Ia Strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology, 63, 3342-3351.
https://doi.org/10.1099/ijs.0.049130-0

[64]   Peeters, C., Zlosnik, J.E.A., Spilker, T., Hird, T.J., LiPuma, J.J. and Vandamme, P. (2013) Burkholderia pseudomultivorans sp. nov., a Novel Burkholderia cepacia Complex Species from Human Respiratory Samples and the Rhizosphere. Systematic and Applied Microbiology, 36, 483-489.
https://doi.org/10.1016/j.syapm.2013.06.003

[65]   Gadagkar, S.R., Rosenberg, M.S. and Kumar, S. (2005) Inferring Species Phylogenies from Multiple Genes: Concatenated Sequence Tree versus Consensus Gene Tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304, 64-74.
https://doi.org/10.1002/jez.b.21026

[66]   Abd-Alla, M.H. (1998) Growth and Siderophore Production in Vitro of Bradyrhizobium (Lupin) Strains under Iron Limitation. European Journal of Soil Biology, 34, 99-104.
https://doi.org/10.1016/S1164-5563(99)80007-7

[67]   Abd-Alla, M.H. (1999) Nodulation and Nitrogen Fixation of Lupinus Species with Bradyrhizobium (lupin) Strains in Iron-Deficient Soil. Biology and Fertility of Soils, 28, 407-415.
https://doi.org/10.1007/s003740050513

[68]   Robinson, K.O., Beyene, D.A., van Berkum, P., Knight-Mason, R. and Bhardwaj, H.L. (2000) Variability in Plant-Microbe Interaction between Lupinus Lines and Bradyrhizobium Strains. Plant Science, 159, 257-264.
https://doi.org/10.1016/S0168-9452(00)00345-9

[69]   Peix, A., Ramirez-Bahena, M.H., Flores-Felix, J.D., Alonso de la Vega, P., Rivas, R., Mateos, P.F., et al. (2015) Revision of the Taxonomic Status of the Species Rhizobium lupini and Reclassification as Bradyrhizobium lupini comb. nov. International Journal of Systematic and Evolutionary Microbiology, 65, 1213-1219.
https://doi.org/10.1099/ijs.0.000082

[70]   Estrada-De Los Santos, P., Bustillos-Cristales, R. and Caballero-Mellado, J. (2001) Burkholderia, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution. Applied and Environmental Microbiology, 67, 2790-2798.
https://doi.org/10.1128/AEM.67.6.2790-2798.2001

[71]   Vandamme, P., Goris, J., Chen, W.-M., De Vos, P. and Willems, A. (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., Nodulate the Roots of Tropical Legumes. Systematic and Applied Microbiology, 25, 507-512.
https://doi.org/10.1078/07232020260517634

[72]   Elliott, G.N., Chen, W., Chou, J., Wang, H., Sheu, S., Perin, L., et al. (2007) Burkholderia phymatum Is a Highly Effective Nitrogen-Fixing Symbiont of Mimosa spp. and Fixes Nitrogen ex Planta. New Phytologist, 173, 168-180.
https://doi.org/10.1111/j.1469-8137.2006.01894.x

[73]   Gyaneshwar, P., Hirsch, A.M., Moulin, L., Chen, W.-M., Elliott, G.N., Bontemps, C., et al. (2011) Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects. Molecular Plant-Microbe Interactions, 24, 1276-1288.
https://doi.org/10.1094/MPMI-06-11-0172

[74]   Martínez-Aguilar, L., Salazar-Salazar, C., Méndez, R.D., Caballero-Mellado, J., Hirsch, A.M., Vásquez-Murrieta, M.S., et al. (2013) Burkholderia caballeronis sp. nov., a Nitrogen Fixing Species Isolated from Tomato (Lycopersicon esculentum) with the Ability to Effectively Nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek, 104, 1063-1071.
https://doi.org/10.1007/s10482-013-0028-9

[75]   Lemaire, B., Van Cauwenberghe, J., Verstraete, B., Chimphango, S., Stirton, C., Honnay, O., et al. (2016) Characterization of the Papilionoid-Burkholderia Interaction in the Fynbos Biome: The Diversity and Distribution of Beta-Rhizobia Nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Systematic and Applied Microbiology, 39, 41-48.
https://doi.org/10.1016/j.syapm.2015.09.006

[76]   Chen, W.M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G. and Boivin-Masson, C. (2003) Legume Symbiotic Nitrogen Fixation by Beta-Proteobacteria Is Widespread in Nature. Journal of Bacteriology, 185, 7266-7272.
https://doi.org/10.1128/JB.185.24.7266-7272.2003

[77]   Estrada-De Los Santos, P., Vinuesa, P., Martínez-Aguilar, L., Hirsch, A.M. and Caballero-Mellado, J. (2013) Phylogenetic Analysis of Burkholderia Species by Multilocus Sequence Analysis. Current Microbiology, 67, 51-60.
https://doi.org/10.1007/s00284-013-0330-9

[78]   Solca, N.M., Bernasconi, M.V., Valsangiacomo, C., Van Doorn, L.-J. and Piffaretti, J.-C. (2001) Population Genetics of Helicobacter pylori in the Southern Part of Switzerland Analysed by Sequencing of Four Housekeeping Genes (atpD, glnA, scoB and recA), and by vacA, cagA, iceA and IS605 Genotyping. Microbiology, 147, 1693-1707.
https://doi.org/10.1099/00221287-147-6-1693

[79]   Tian, C.F., Young, J.P.W., Wang, E.T., Tamimi, S.M. and Chen, W.X. (2010) Population Mixing of Rhizobium leguminosarum bv. viciae Nodulating Vicia faba: The Role of Recombination and Lateral Gene Transfer. FEMS Microbiology Ecology, 73, 563-576.

[80]   Ridderberg, W., Wang, M. and Norskov-Lauritsen, N. (2012) Multilocus Sequence Analysis of Isolates of Achromobacter from Patients with Cystic Fibrosis Reveals Infecting Species Other than Achromobacter xylosoxidans. Journal of Clinical Microbiology, 50, 2688-2694.
https://doi.org/10.1128/JCM.00728-12

 
 
Top