Back
 JWARP  Vol.9 No.12 , November 2017
Evaluation of Eleven Reference Evapotranspiration Models in Semiarid Conditions
Abstract: The objectives of this study were to evaluate the performance of the FAO Penman Monteith reference evapotranspiration model under limited data and some mine temperature methods of reference evapotranspiration (ETo) under the semiarid and arid conditions in Mali. The results showed that under limited data conditions, the FAO-PM equation achieved accurate estimation of daily ETo when solar radiation, relative humidity, and wind speed are lacking individually with root mean squared errors (RMSE) averaging 0.52, 0.56 and 0.62 mm/day, respectively. Much more accurate ETo was estimated under relative humidity and wind speed missing data conditions with RMSE varying from 0.20 to 0.58 mm/day and average RE, MBE and MAE of 6.7%, -0.25 mm/day and 0.30 mm/day. The Jensen-Haise equation systematically overestimated ETo while the Hansen, Christiansen, and Irmak, and the two Tabari’s equations underestimated ETo at all weather stations. The Abtew equation showed the best performance among the selected ETo equations.
Cite this paper: Djaman, K. , Koudahe, K. , Akinbile, C. and Irmak, S. (2017) Evaluation of Eleven Reference Evapotranspiration Models in Semiarid Conditions. Journal of Water Resource and Protection, 9, 1469-1490. doi: 10.4236/jwarp.2017.912094.
References

[1]   Nicholson, S.E. and Grist, J.P. (2003) On the Seasonal Evolution of Atmospheric Circulation over West Africa and Equatorial Africa. Journal of Climate, 16, 1013-1030.
https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2

[2]   Allen, R.G., Pereira, L.S., Howell, T.A. and Jensen, M.E. (2011) Evapotranspiration Information Reporting: II. Recommended Documentation. Agricultural Water Management, 98, 921-929.
https://doi.org/10.1016/j.agwat.2010.12.016

[3]   Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., Ndiaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K. and Saito, K. (2015) Evaluation of Sixteen Reference Evapotranspiration Methods under Sahelian Conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139-159.

[4]   Djaman, K., Irmak, S., Kabenge, I. and Futakuchi, K. (2016a) Evaluation of the FAO-56 Penman-Monteith Model with Limited Data and the Valiantzas Models for Estimating Reference Evapotranspiration in the Sahelian Conditions. Journal of Irrigation and Drainage Engineering, 142.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001070

[5]   Djaman, K., Tabari, H., Balde, A.B., Diop, L., Futakuchi, K. and Irmak S. (2016b) Analyses, Calibration and Validation of Evapotranspiration Models to Predict Grass Reference Evapotranspiration in the Senegal River Delta. Journal of Hydrology: Regional Studies, 8, 82-94.

[6]   Jensen, M.E. and Haise, H.R. (1963) Estimating Evapotranspiration from Solar Radiation. Journal of the Irrigation and Drainage Division, 89, 15-41.

[7]   Mendonça, J.C., Sousa, E.F., de Bernardo, S., Dias, G.P. and Grippa, S. (2003) Comparison of Estimation Methods of Reference Crop Evapotranspiration (ETo) for Northern Region of Rio de Janeiro State, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 7, 275-279.
https://doi.org/10.1590/S1415-43662003000200015

[8]   Trajkovic, S. and Kolakovic, S. (2009) Evaluation of Reference Evapotranspiration Equations under Humid Conditions. Water Resource Management, 23, 3057-3067.
https://doi.org/10.1007/s11269-009-9423-4

[9]   Thornthwaite, C.W. (1948) An Approach towards a Rational Classification of Climate. Geographical Review, 38, 55-94.
https://doi.org/10.2307/210739

[10]   Doorenbos, J. and Pruitt, W.O. (1977) Guidelines for Predicting Crop Water Requirements. FAO Irrigation and Drainage, Paper, 24, FAO, Rome.

[11]   Hargreaves, G.H. and Samani, Z.A. (1985) Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1, 96-99.
https://doi.org/10.13031/2013.26773

[12]   Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56, FAO, Rome.

[13]   ASCE-EWRI (2005) The ASCE Standardized Reference Evapotranspiration Equation. In: Allen, R.G., Walter, I.A., Elliot, R.L., et al., Eds., Standardization of Reference Evapotranspiration Task Committee Final Report, Environmental and Water Resources Institute (EWRI) of the American Society of Civil, Engineers, ASCE, Reston, VA, 213 p.

[14]   Valiantzas, J.D. (2013) Simplified Forms for the Standardized FAO-56 Penman-Monteith Reference Evapotranspiration Using Limited Data. Journal of Hydrology, 505, 13-23.
https://doi.org/10.1016/j.jhydrol.2013.09.005

[15]   Utset, A., Farre, I., Martinez-Cob, A. and Cavero, J. (2004) Comparing Penman-Monteith and Priestley-Taylor Approaches as Reference Evapotranspiration Inputs for Modeling Maize Water Use under Mediterranean Conditions. Agricultural Water Management, 66, 205-219.
https://doi.org/10.1016/j.agwat.2003.12.003

[16]   López-Urrea, R., Martín de Santa, O.F., Fabeiro, C. and Moratalla, A. (2006) Testing Evapotranspiration Equations Using Lysimeter Observations in a Semiarid Climate. Agricultural Water Management, 85, 15-26.
https://doi.org/10.1016/j.agwat.2006.03.014

[17]   Bodner, G., Loiskandl, W. and Kaulm, H. (2007) Cover Crop Evapotranspiration under Semi-Arid Conditions Using FAO Dual Crop Coefficient Method with Water Stress Compensation. Agricultural Water Management, 93, 85-98.
https://doi.org/10.1016/j.agwat.2007.06.010

[18]   Xing, Z., Chow, L., Meng, F., Rees, H.W., Monteith, J. and Lionel, S. (2008) Testing Reference Evapotranspiration Estimation Methods Using Evaporation Pan and Modeling in Maritime Region of Canada. Journal of Irrigation and Drainage Engineering, 134, 417-424.
https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(417)

[19]   Irmak, S., Irmak, A., Howell, T.A., Martin, D.L., Payero, J.O. and Copeland, K.S. (2008) Variability Analyses of Alfalfa-Reference to Grass-Reference Evapotranspiration Ratios in Growing and Dormant Seasons. Journal of Irrigation and Drainage Engineering, 134, 147-159.
https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(147)

[20]   Djaman, K., Rudnick, D., Mel, V.C., Mutiibwa, D., Diop, L., Sall, M., Kabenge, I., Bodian, A., Tabari, A. and Irmak, S. (2017a) Evaluation of the Valiantzas’ Simplified Forms of the FAO-56 Penman-Monteith Reference Evapotranspiration Model under Humid Climate. Journal of Irrigation and Drainage Engineering, 143.

[21]   Ndiaye, P.M., Bodian, A., Diop, L. and Djaman, K. (2017) Evaluation de vingt méthodes d’estimation de l’évapotranspiration journalière de référence au Burkina Faso. [Evaluation of Twenty Daily Reference Evapotranspiration Estimation Methods in Burkina Faso..] Physio-Geo, 11-1, 129-146.
https://doi.org/10.4000/physio-geo.5369

[22]   Djaman, K., Irmak, S. and Futakuchi, K. (2017b) Daily Reference Evapotranspiration Estimation under Limited Data in Eastern Africa. Journal of Irrigation and Drainage Engineering, 143.

[23]   Tabari, H., Grismer, M. and Trajkovic, S. (2013) Comparative Analysis of 31 Reference Evapotranspiration Methods under Humid Conditions. Irrigation Science, 31, 107-117.
https://doi.org/10.1007/s00271-011-0295-z

[24]   Ahooghalandari, M., Khiadani, M. and Jahromi, W.E. (2016) Calibration of Valiantzas’ Reference Evapotranspiration Equations for the Pilbara Region, Western Australia. Theoretical and Applied Climatology, 128, 845-856.
https://doi.org/10.1007/s00704-016-1744-7

[25]   Singh, V.P. and Xu, C.Y. (1997) Evaluation and Generalization of 13 Mass-Transfer Equations for Determining Free Water Evaporation. Hydrological Processes, 11, 311-324.
https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y

[26]   Tabari, H. and Hosseinzadeh-Talaee, P. (2011) Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. Journal of Hydrologic Engineering, 16, 837-845.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000366

[27]   Heydari, M.M. and Heydari, M. (2014) Evaluation of Pan Coefficient Equations for Estimating Reference Crop Evapotranspiration in the Arid Region. Archives of Agronomy and Soil Science, 60, 715-731.
https://doi.org/10.1080/03650340.2013.830286

[28]   Valipour, M. (2015) Importance of Solar Radiation, Temperature, Relative Humidity, and Wind Speed for Calculation of Reference. Archives of Agronomy and Soil Science, 6, 239-255.

[29]   Zhai, L., Feng, Q., Li, Q. and Xu, C. (2010) Comparison and Modification of Equations for Calculating Evapotranspiration (ET) with Data from Gansu Province, Northwest China. Irrigation and Drainage, 59, 477-490.
https://doi.org/10.1002/ird.502

[30]   Bogawski, P. and Bednorz, E. (2014) Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resources Management, 28, 5021-5038.
https://doi.org/10.1007/s11269-014-0787-8

[31]   Thepadia, M. and Martinez, C.J. (2012) Regional Calibration of Solar Radiation and Reference Evapotranspiration Estimates with Minimal Data in Florida. Journal of Irrigation and Drainage Engineering, 138, 111-119.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000394

[32]   Azhar, A.H. and Perera, B.J.C. (2011) Evaluation of Reference Evapotranspiration Estimation Methods under Southeast Australian Conditions. Journal of Irrigation and Drainage Engineering, 137, 268-279.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000297

[33]   Abtew, W. (1996) Evapotranspiration Measurements and Modeling for Three Wetland Systems in South Florida. Journal of the American Water Resources Association, 32, 465-473.
https://doi.org/10.1111/j.1752-1688.1996.tb04044.x

[34]   Jabloun, M. and Sahli, A. (2008) Evaluation of FAO-56 Methodology for Estimating Reference Evapotranspiration Using Limited Climatic Data Application to Tunisia. Agricultural Water Management, 95, 707-715.
https://doi.org/10.1016/j.agwat.2008.01.009

[35]   Sentelhas, P.C., Gillespie, T.J. and Santos, E.A. (2010) Evaluation of FAO Penman-Monteith and Alternative Methods for Estimating Reference Evapotranspiration with Missing Data in Southern Ontario, Canada. Agricultural Water Management, 97, 635-644.
https://doi.org/10.1016/j.agwat.2009.12.001

[36]   Martinez, C.J. and Thepadia, M. (2010) Estimating Reference Evapotranspiration with Minimum Data in Florida, USA. Journal of Irrigation and Drainage Engineering, 136, 494-501.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000214

[37]   Rojas, J. and Sheffield, R. (2013).Evaluation of Daily Reference Evapotranspiration Methods as Compared with the ASCE-EWRI Penman-Monteith Equation Using Limited Weather Data in Northeast Louisiana. Journal of Irrigation and Drainage Engineering, 139, 285-292.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000523

[38]   Hansen, S. (1984) Estimation of Potential and Actual Evapotranspiration. Hydrology Research, 15, 205-212.

[39]   Droogers, P. and Allen, R.G. (2002) Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrigation Drainage System, 16, 33-45.
https://doi.org/10.1023/A:1015508322413

[40]   Hargreaves, G.H. and Allen, R.G. (2003) History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering ASCE, 129, 53-63.
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)

[41]   Irmak, S., Irmak, A., Allen, R.G. and Jones, J.W. (2003) Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates. Journal of Irrigation and Drainage Engineering, 129, 336-347.
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)

[42]   Weigel, A.P., Liniger, M.A. and Appenzeller, C. (2008) Can Multi-Model Combination Really Enhance the Prediction Skill of Probabilistic Ensemble Forecasts? Quarterly Journal of the Royal Meteorological Society, 134, 241-260.
https://doi.org/10.1002/qj.210

[43]   Hagedorn, R., Doblas-Reyes, F.J. and Palmer, T.N. (2005) The Rationale behind the Success of Multi-Model Ensembles in Seasonal Forecasting. Part I: Basic Concept. Tellus, A57, 219-233.

[44]   Cantelaube, P. and Terres, J. (2005) Seasonal Weather Forecasts for Crop Yield Modeling in Europe. Tellus, A57, 476-487.
https://doi.org/10.3402/tellusa.v57i3.14669

[45]   Guber, A.K., Pachepsky, Y.A., Van Genuchten, M.T., Rawls, W.J., Simunek, J., Jacques, D. and Cady, R.E. (2006) Field-Scale Water Flow Simulations Using Ensembles of Pedo Transfer Functions for Soil Water Retention. Vadose Zone Journal, 5, 234-247.
https://doi.org/10.2136/vzj2005.0111

[46]   Tebaldi, C and Knutti, R. (2007) The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philosophical Transactions of the Royal Society A, 365, 2053-2075
https://doi.org/10.1098/rsta.2007.2076

[47]   Christensen, N.S. and Lettenmaier, D.P. (2007) A Multimodel Ensemble Approach to Assessment of Climate Change Impacts on the Hydrology and Water Resources of the Colorado River Basin. Hydrology and Earth System Sciences, 11, 1417-1434.
https://doi.org/10.5194/hess-11-1417-2007

[48]   Xu, C.Y. and Singh, V.P. (2000) Evaluation and Generalization of Radiation-Based Methods for Calculating Evaporation. Hydrological Processes, 14, 339-349.
https://doi.org/10.1002/(SICI)1099-1085(20000215)14:2<339::AID-HYP928>3.0.CO;2-O

[49]   Popova, Z., Kercheva, M. and Pereira, L. (2006) Validation of the FAO Methodology for Computing ETo with Limited Data. Application to South Bulgaria. Irrigation and Drainage, 215, 201-215.
https://doi.org/10.1002/ird.228

[50]   Kwon, H. and Choi, M. (2011) Error Assessment of Climate Variables for FAO-56 Reference Evapotranspiration. Meteorology and Atmospheric Physics, 112, 81-90.
https://doi.org/10.1007/s00703-011-0132-1

[51]   Todorovic, M., Karic, B. and Pereira, L.S. (2013) Reference Evapotranspiration Estimate with Limited Weather Data across a Range of Mediterranean Climates. Journal of Hydrology, 481, 166-176.
https://doi.org/10.1016/j.jhydrol.2012.12.034

[52]   Wang, Y.M., Namaona, W., Gladden, L.A., Traore, S. and Deng, L.T. (2011) Comparative Study on Estimating Reference Evapotranspiration under Limited Climate Data Condition in Malawi. Int. Journal of the Physical Sciences, 6, 2239-2248.

[53]   Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B. and Célleri, R. (2015) Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Application to the Wet Páramo of Southern Ecuador. Mountain Research and Development, 35, 230-239.
https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1

[54]   Tomar, A.S. (2015) Comparative Performance of Reference Evapotranspiration Equations at Sub-Humid Tarai Region of Uttarakhand, India. International Journal of Agricultural Research, 10, 65-73.
https://doi.org/10.3923/ijar.2015.65.73

[55]   Salih, A. and Sendil, U. (1984) Evapotranspiration under Extremely Arid Climates. Journal of Irrigation and Drainage Engineering, 110, 289-303.
https://doi.org/10.1061/(ASCE)0733-9437(1984)110:3(289)

[56]   Fernandes, L.C., Paiva, C.M. and Filho, R.C.O. (2012) Evaluation of Six Empirical Evapotranspiration Equations—Case Study: Campos dos Goytacazes/RJ. Revista Brasileira de Meteorologia, 27, 272-280.
https://doi.org/10.1590/S0102-77862012000300002

[57]   Al-Sha'lan, S. and Salih, A. (1987) Evapotranspiration Estimates in Extremely Arid Areas. Journal of Irrigation and Drainage Engineering, 113, 565-574.
https://doi.org/10.1061/(ASCE)0733-9437(1987)113:4(565)

[58]   Kingston, D.G., Todd, M.C., Taylor, R.G., Thompson, J.R. and Arnell, N.W. (2009) Uncertainty in the Estimation of Potential Evapotranspiration under Climate Change. Geophysical Research Letters, 36, L20403.
https://doi.org/10.1029/2009GL040267

[59]   Xystrakis, F. and Matzarakis, A. (2011) Evaluation of 13 Empirical Reference Potential Evapotranspiration Equations on the Island of Crete in Southern Greece. Journal of Irrigation and Drainage Engineering, 137, 211-222.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000283

[60]   Sabziparvar, A.A. and Mirgaloybayat, R. (2015) Evaluation of Some Existing Empirical and Semi-Empirical Net Radiation Models for Estimation of Daily ET0. Journal of Advanced Agricultural Technologies, 2, 46-49.
https://doi.org/10.12720/joaat.2.1.46-49

[61]   Gavil′an, P., Lorite, I.J., Tornero, S. and Berengena, J. (2006) Regional Calibration of Hargreaves Equation for Estimating Reference ET in a Semiarid Environment. Agricultural Water Management, 81, 257-281.
https://doi.org/10.1016/j.agwat.2005.05.001

[62]   Wada, Y., Wisser, D., Eisner, S., Florke, M., Gerten, D., Haddeland, I., Hanasaki, N., Masaki, Y., Portmann, F.T., Stacke, T., Tessler, Z. and Schewe, J. (2013) Multi-Model Projections and Uncertainties of Irrigation Water Demand under Climate Change. Geophysical Research Letters, 40, 4626-4632.
https://doi.org/10.1002/grl.50686

[63]   Multsch, S., Exbrayat, J.F., Kirk, M., Viner, N.R., Frede, H.G. and Breuer, L. (2015) Reduction of Predictive Uncertainty in Estimating Irrigation Water Requirement through Multi-Model Ensembles and Ensemble Averaging. Geoscientific Model Development, 8, 1233-1244.
https://doi.org/10.5194/gmd-8-1233-2015

[64]   Wang, A., Bohn, T., Mahannama, S.P., Koster, D.R. and Lettenmaier, D.P. (2009) Multimodel Ensemble Reconstruction of Drought over the Continental United States. Journal of Climate, 22, 2694-2712.
https://doi.org/10.1175/2008JCLI2586.1

[65]   Samaras, D.A., Reif, A. and Theodoropoulos, K. (2014) Evaluation of Radiation-Based Reference Evapotranspiration Models under Different Mediterranean Climates in Central Greece. Water Resources Manage, 28, 207-225.
https://doi.org/10.1007/s11269-013-0480-3

 
 
Top