[1] Colijn, C. and Mackey, M.C. (2005) A Mathematical Model of Hematopoiesis: I. Periodic Chronic Myelogenous Leukemia. Journal of Theory Biology, 237, 117-132.
https://doi.org/10.1016/j.jtbi.2005.03.033
[2] Colijn, C. and Mackey, M.C. (2005) A Mathematical Model of Hematopoiesis: II. Cyclical Neutropenia. Journal of Theory Biology, 237, 133-146.
https://doi.org/10.1016/j.jtbi.2005.03.034
[3] Colijn, C., Fowler, A. and Mackey, M.C. (2006) High Frequency Spikes in Long Period Blood Cell Oscillations. Journal of Mathematical Biology, 53, 499-519.
https://doi.org/10.1007/s00285-006-0027-9
[4] Adimy, M., Crauste, F. and Ruan, S.G. (2006) Periodic Oscillations in Leukopoiesis Models with Two Delays. Journal of Theory Biology, 242, 288-299.
https://doi.org/10.1016/j.jtbi.2006.02.020
[5] Colijn, C. and Mackey, M.C. (2007) Bifurcation and Bistability in a Model of Hematopoietic Regulation. SIAM Journal of Applied Dynamical Systems, 6, 378-394.
https://doi.org/10.1137/050640072
[6] Zhuge, C.J., Lei, J.Z. and Mackey, M.C. (2012) Neutrophil Dynamics in Response to Chemotherapy and G-SCF. Journal of Theory Biology, 293, 111-120.
https://doi.org/10.1016/j.jtbi.2011.10.017
[7] Brooks, G., Langlois, G.P., Lei, J.Z. and Mackey, M.C. (2012) Neutrophil Dynamics after Chemotherapy and G-CSF: The Role of Pharmacokinetics in Shaping the Response. Journal of Theory Biology, 315, 97-109.
https://doi.org/10.1016/j.jtbi.2012.08.028
[8] Lei, J.Z. and Mackey, M.C. (2014) Understanding and Treating Cytopenia through Mathematical Modeling. In: Corey, S., Kimmel, M. and Leonard, J., Eds., A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, Volume 844, Springer, New York, NY, 279-302.
[9] Foley, C. and Mackey, M.C. (2009) Mathematical Model for G-CSF Administration after Chemotherapy. Journal of Theory Biology, 257, 27-44.
https://doi.org/10.1016/j.jtbi.2008.09.043
[10] Fredrickson-Hemsing, L., Ji, S. and Bozovic, D. (2012) Mode-Locking Dynamics of Hair Cells of the Inner Ear. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 86, 021915.
https://doi.org/10.1103/PhysRevE.86.021915
[11] Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Westview Press, Cambridge.
[12] Shlomovitz, R., Fredrickson-Hemsing, L., Bozovic, D., et al. (2013) Low Frequency Entrainment of Oscillatory Bursts in Hair Cells. Journal of Biophysics, 104, 1661-1669.
[13] Zhang, S. and Xu, J. (2013) Quasiperiodic Motion Induced by Heterogeneous Delays in a Simplified Internet Congestion Control Model. Nonlinear Analysis: Real World Applications, 14, 661-670.
[14] Zhang, S. and Xu, J. (2011) Time-Varying Delayed Feedback Control for an Internet Congestion Control Model. Discrete and Continuous Dynamical Systems Series B, 653-665.
[15] Li, C.G., Chen, G.R., Liao, X.F. and Yu, J.B. (2004) Hopf Bifurcation in an Internet Congestion Control Model. Chaos, Solitons and Fractals, 19, 853-862.
[16] Hale, J. (2003) Theory of Functional Differential Equations. World Publishing Corporation, Beijing.
[17] Ma, S.Q., Wang, X.H., Lei, J.H. and Feng, Z.S. (2010) Dynamics of the Delay Hematological Cell Model. International Journal of Biomathematics, 3, 105-125.
https://doi.org/10.1142/S1793524510000829
[18] Bernard, S., Bélair, J. and Mackey, M.C. (2003) Oscillations in Cyclical Neutropenia: New Evidence Based on Mathematical Modeling. Journal of Theory Biology, 223, 293-298.
[19] Santillan, M., Mahaffy, J.M., Bélair, J. and Mackey, M.C. (2000) Regulation of Platelet Production: The Normal Response to Perturbation and Cyclical Platelet Disease. Journal of Theory Biology, 206, 585-603.
https://doi.org/10.1006/jtbi.2000.2149
[20] Haurie, C., Dale, D.C., Rudnicki, R. and Mackey, M.C. (2000) Modeling Complex Neutrophil Dynamics in the Grey Collie. Journal of Theory Biology, 24, 505-519.
https://doi.org/10.1006/jtbi.2000.2034
[21] Hearm, T., Haurie, C. and Mackey, M.C. (1998) Cyclical Neutropenia and the Peripherial Control of White Blood Cell Production. Journal of Theory Biology, 192, 167-181.
https://doi.org/10.1006/jtbi.1997.0589