[1] Araghinejad, S., Azmi, M. and Kholghi, M. (2011) Application of Artificial Neural Network Ensembles in Probabilistic Hydrological Forecasting. Journal of Hydrology, 407, 94-104.
https://doi.org/10.1016/j.jhydrol.2011.07.011
[2] Kouassi, K.L., Kouassi, K.M., Konan, K.S., Meledje, N.H., Koffi, Y.B. and Biémi, J. (2013) Modélisation Pluie-Débit à L’aide des Réseaux de Neurones Artificiels sur le Bassin Versant Transfrontalier de la Bia (Côte D’ivoire—Ghana) [Rainfall-Flow Modeling Using Artificial Neural Networks on the Transboundary Basin of the Bia (Ivory Coast-Ghana).]. European Journal of Scientific Research, 109, 133-140.
[3] ASCE (2000) Artificial Neural Networks in Hydrology. I: Preliminary Concepts. Journal of Hydrologic Engineering, 5, 115-123.
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
[4] Dawson, C.W., Abrahart, R.J., Shamseldin, A.Y. and Wilby, R.L. (2006) Flood Estimation at Ungauged Sites Using Artificial Neural Networks. Journal of Hydrology, 319, 391-409.
https://doi.org/10.1016/j.jhydrol.2005.07.032
[5] Lin, G.-F. and Wu, M.-C. (2009) A Hybrid Neural Network Model for Typhoon-Rainfall Forecasting. Journal of Hydrology, 375, 450-458.
https://doi.org/10.1016/j.jhydrol.2009.06.047
[6] Kentel, E. (2009) Estimation of River Flow by Artificial Neural Networks and Identification of Input Vectors Susceptible to Producing Unreliable Flow Estimates. Journal of Hydrology, 375, 481-488.
https://doi.org/10.1016/j.jhydrol.2009.06.051
[7] Chua, L.H.C. and Wong, T.S.W. (2010) Improving Event-Based Rainfall—Runoff Modeling Using A Combined Artificial Neural Network—Kinematic Wave Approach. Journal of Hydrology, 390, 92-107.
https://doi.org/10.1016/j.jhydrol.2010.06.037
[8] Wu, C.L., Chau, K.W. and Fan, C. (2010) Prediction of Rainfall Time Series Using Modular Artificial Neural Networks Coupled with Data-Preprocessing Techniques. Journal of Hydrology, 389, 146-167.
https://doi.org/10.1016/j.jhydrol.2010.05.040
[9] Meledje, N.H., Kouassi, K.L., Alexis, N.Y. and Savané, I. (2013) Probability Distribution of Rainfall in the Bia Watershed: Contribution of Markov Chains. Hydrology in a Changing World: Environmental and Human Dimensions, 363, 379-385.
[10] Coulibaly, P., Anctil, F. and Bobee, B. (2000) Daily Reservoir Inflow Forecasting Using Artificial Neural Networks with Stopped Training Approach. Journal of Hydrology, 230, 244-257.
https://doi.org/10.1016/S0022-1694(00)00214-6
[11] ASCE (2000) Articifial Neural Networks in Hydrology. II: Hydrological Applications. Journal of Hydrologic Engineering, 5, 124-137.
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
[12] Tricart, J., et al. (1973) Une monographie physique de la Côte-d’Ivoire. Annales de Géographie, 82, 369-372.
[13] Özel, T. and Nadgir, A. (2002) Prediction of Flanck Wear by Using Back Propagation Neural Network Modeling When Cutting Hardened H-13 Steel with Chamfered and Honed CBN Tools. International Journal of Machine Tools & Manufacture, 42, 287-297.
https://doi.org/10.1016/S0890-6955(01)00103-1
[14] Mélèdje, N.H. (2016) Modélisation de la dynamique hydrologique et du flux de sédiments dans le lac du barrage hydroélectrique d’Ayamé1 [Modeling the Hydrological Dynamics and Sediment Flow in the Lake of the Hydroelectric Dam of Ayame1.]. Doctorat unique, Université Nangui Abrogoua, Abidjan.
[15] Kouassi, K.L. (2007) Hydrologie, Transport Solide et Modélisation de la Sédimentation dans les Lacs des Barrages Hydroélectriques de Côte d’Ivoire: Cas du Lac de Taabo [Hydrology, Solid Transport and Modeling of Sedimentation in the Lakes of the Hydropower Dams of Côte d'Ivoire: Case of Lake Taabo.]. Thèse de doctorat, Université d’Abobo-Adjamé, Abidjan.
[16] Oudin, L. (2003) Une formule simple d’évapotranspiration potentielle pour la modélisation pluie-débit à l’échelle d’un bassin versant. [A Simple Formula of Potential Evapotranspiration for the Rainfall-Discharge Modeling at the Scale of a Watershed.] La houille blanche, 6, 8 p.
[17] Zhang, B., Xu, D., Liu, Y., Li, F., Cai, J. and Du, L. (2016) Multi-Scale Evapotranspiration of Summer Maize and the Controlling Meteorological Factors in North China. Agricultural and Forest Meteorology, 216, 1-12.
https://doi.org/10.1016/j.agrformet.2015.09.015
[18] Mouelhi, S. (2003) Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier. [Towards a Coherent Chain of Conceptual Rain-Flow Models at Multi-Year, Annual, Monthly and Daily Times.] Thèse de doctorat, Ecole Nationale du Génie Rural des Eaux et des Forêts, Paris.
[19] Koffi, Y.B. (2007) Modélisation pluie-débit en région tropicale humide: Application des réseaux de neurones sur quatre stations hydrométriques du Bandama Blanc (Bada, Marabadiassa, Tortiya et Bou), Nord de la Cöte d’Ivoire. [Rainfall-Flow Modeling in the Humid Tropics Region: Application of Neural Networks at Four Bandama Blanc Hydrometric Stations (Bada, Marabadiassa, Tortiya and Bou), Northern Cöte d'Ivoire.] Thèse de doctorat, Université de Cocody, Abidjan.
[20] Randrianarivony, R.N., Lauret, P., Randriamanantany, Z.A. and Gatina, J.C. (2009) Modélisation du régime annuel des petites rivières en vue d’installation de microcentrales hydroélectriques. [Modeling the Annual Regime of Small Rivers for the Installation of Micro Hydropower Plants.] Afrique Science: Revue Internationale des Sciences et Technologie, 5, 11 p.