JBM  Vol.5 No.11 , November 2017
Down-Regulation of GKN1 in Gastric Cancer Is Not Associated with the RUNX3 Expression
Abstract: Gastrokine 1 (GKN1) is a gastric mucosal protein highly expressed and secreted in normal individuals but during Helicobacter pylori infection or in gastric carcinogenesis it is strongly down-regulated or totally absent. In gastric cancer, the GKN1 gene is silenced through an epigenetic mechanism most likely mediated by a transcription factor that promotes on GKN1 promoter the activity of the enzymes SUV39H1 and HDACs. Because RUNX3 is a potential candidate in the regulation of molecular carcinogenesis process of stomach cancers, we tried to assess if RUNX3 could be involved in GKN1 down-regulation in GC. 17 paired of non-tumoral and tumoral surgical specimens from patients with gastric cancer were analyzed for GKN1 and RUNX3 by Western blotting and chromatin immunoprecipitation (Chip) assays. The overall results indicated that RUNX3 expression was not associated with the down-regulation of GKN1. The expression levels of RUNX3 in non-tumoral and tumoral samples suggest that RUNX3 does not act as a tumor suppressor but that it might play a complex oncogenic role in gastric cancer cells.
Cite this paper: Di Stadio, C. , Altieri, F. , Federico, A. , Miselli, G. , Niglio, A. , De Palma, M. , Rippa, E. and Arcari, P. (2017) Down-Regulation of GKN1 in Gastric Cancer Is Not Associated with the RUNX3 Expression. Journal of Biosciences and Medicines, 5, 80-90. doi: 10.4236/jbm.2017.511009.

[1]   Rippa, E., Altieri, F., Di Stadio, C.S., Miselli, G., Lamberti, A., Federico, A., Quagliariello, V., Papale, F., Guerra, G. and Arcari, P. (2015) Ectopic Expression of Gastrokine 1 in Gastric Cancer Cells Up-Regulates Tight and Adherens Junction Proteins Network. Pathology Research and Practice, 211, 577-583.

[2]   Toback, F.G., Walsh-Reitz, M.M., Musch, M.W., Chang, E.B., Del Valle, J., Ren, H., Huang, E. and Martin, T.E. (2003) Peptide Fragments of AMP-18, a Novel Secreted Gastric Antrum Mucosal Protein, Are Mitogenic and Motogenic. American Journal of Physiology Gastrointestinal and Liver Physiology, 285, G344–G353.

[3]   Walsh-Reitz, M.M., Huang, E.F., Musch, M.W., Chang, E.B., Martin, T.E., Kartha, S. and Toback, F.G. (2005) AMP-18 Protects Barrier Function of Colonic Epithelial Cells: Role of Tight Junction Proteins. American Journal of Physiology Gastrointestinal and Liver Physiology, 289, G163-G171.

[4]   Nardone, G., Martin, G., Rocco, A., Rippa, E., La Monica, G., Caruso, F. and Arcari, P. (2008) Molecular Expression of Gastrokine 1 in Normal Mucosa and in Helicobacter pylori Related Preneoplastic and Neoplastic Gastric Lesions. Cancer Biology and Therapy, 7, 1890-1895.

[5]   Oien, K.A., McGregor, F., Butler, S., Ferrier, R.K., Downie, I., Bryce, S., Burns, S. and Keith, W.N. (2004) Gastrokine 1 Is Abundantly and Specifically Expressed in Superficial Gastric Epithelium, Down-Regulated in Gastric Carcinoma, and Shows High Evolutionary Conservation. The Journal of Pathology, 203, 789-797.

[6]   Rippa, E., La Monica, G., Allocca, R., Romano, M.F., De Palma, M. and Arcari, P. (2011) Overexpression of Gastrokine 1 in Gastric Cancer Cells Induces Fas-Mediated Apoptosis. Journal of Cellular Physiology, 226, 2571-2578.

[7]   Altieri, F., Di Stadio, C.S., Federico, A., Miselli, G., De Palma, M., Rippa, E. and Arcari, P. (2017) Epigenetic Alterations of Gastrokine 1 Gene Expression in Gastric Cancer. Oncotarget, 810, 16899-16911.

[8]   Otto, F., Lübbert, M. and Stock, M. (2003) Upstream and Downstream Targets of RUNX Proteins. Journal of Cellular Biochemistry, 89, 9-18.

[9]   Ito, Y. (2004) Oncogenic Potential of the RUNX Gene Family: “Overview”. Oncogene, 23, 4198-4208.

[10]   Lotem, J., Levanon, D., Negreanu, V. and Groner, Y. (2013) The False Paradigm of RUNX3 Function as Tumor Suppressor in Gastric Cancer. Journal of Cancer Therapy, 4, 16-25.

[11]   Carvalho, R., Milne, A.N., Polak, M., Corver, W.E., Offerhaus, G.J. and Weterman, M.A. (2005) Exclusion of RUNX3 as a Tumour-Suppressor Gene in Early-Onset Gastric Carcinomas. Oncogene, 24, 8252-8258.

[12]   Friedrich, M.J., Rad, R., Langer, R., Voland, P., Hoefler, H., Schmid, R.M., Prinz, C. and Gerhard, M. (2006) Lack of RUNX3 Regulation in Human Gastric Cancer. The Journal of Pathology, 210, 41-146.

[13]   Abnet, C.C., Freedman, N.D, Hu, N., Wang, Z., Yu, K., Shu, X.O., Yuan, J.M., Zheng, W., Dawsey, S.M., Dong, L.M., Lee, M.P., Ding, T., Qiao. Y.L., Gao Y.T., Koh, W.P., Xiang, Y.B., Tang, Z.Z., Fan, J.H., Wang, C., Wheeler, W., Gail, M.H., Yeager, M., Yuenger, J., Hutchinson, A., Jacobs, K.B., Giffen, C.A., Burdett, L., Fraumeni, J.F. Jr, Tucker, M.A., Chow, W.H., Goldstein, A.M., Chanock, S.J. and Taylor, P.R. (2010) A Shared Susceptibility Locus in PLCE1 at 10q23 for Gastric Adenocarcinoma and Esophageal Squamous Cell Carcinoma. Nature Genetics, 42, 764-767.

[14]   Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., et al. (2008) Genetic Variation in PSCA Is Associated with Susceptibility to Diffuse-Type Gastric Cancer. Nature Genetics, 40, 730-740.

[15]   Shi, Y., Hu, Z., Wu, C., Dai, J., Li, H., Dong, J., Wang, M., Miao, X., Zhou, Y., Lu, F., Zhang, H., Hu, L., Jiang, Y., Li, Z., Chu, M., Ma, H., Chen, J., Jin, G., Tan, W., Wu, T., Zhang, Z., Lin, D. and Shen, H. (2011) A Genome-Wide Association Study Identifies New Susceptibility Loci for Non-Cardia Gastric Cancer at 3q13.31 and 5p13.1. Nature Genetics, 43, 1215-1218.

[16]   Wang, L.D., Zhou, F.Y., Li, X.M., et al. (2010) Genome-Wide Association Study of Esophageal Squamous Cell Carcinoma in Chinese Subjects Identifies Susceptibility Loci at PLCE1 and C20orf54. Nature Genetics, 42, 759-763.

[17]   Hu, S.L., Huang, D.B., Sun, Y.B., Wu, L., Xu, W.P., Yin, S., Chen, J., Jiang, X.D. and Shen, G. (2011) Pathobiologic Implications of Methylation and Expression Status of RUNX3 and CHFR Genes in Gastric Cancer. Medical Oncology, 28, 447-454.

[18]   Kudo, Y., Tsunematsu, T. and Takata, T. (2011) Oncogenic Role of RUNX3 in Head and Neck Cancer. Journal of Cellular Biochemistry, 112, 387-393.

[19]   Lee, C.W., Chuang, L.S., Kimura, S., Lai, S.K., Ong, C.W., Yan, B., Salto-Tellez, M., Choolani, M. and Ito, Y. (2011) RUNX3 Functions as an Oncogene in Ovarian Cancer. Gynecologic Oncology, 122, 410-417.

[20]   Li, J., Kleeff, J., Guweidhi, A., Esposito, I., Berberat, P.O., Giese, T., Büchler, M.W. and Friess, H. (2004) RUNX3 Expression in Primary and Metastatic Pancreatic Cancer. Journal of Clinical Pathology, 57, 294-299.

[21]   Salto-Tellez, M., Peh, B.K., Ito, K., Tan, S.H., Chong, P.Y., Han, H.C., Tada, K., Ong, W.Y., Soong, R., Voon, D.C. and Ito, Y. (2006) RUNX3 Protein Is Overexpressed in Human Basal Cell Carcinomas. Oncogene, 25, 7646-7649.

[22]   The American Joint Committee on Cancer (2010) AJCC Cancer Staging Manual and the Future of TNM. 7th Edition, Annals of Surgical Oncology, 17, 1471-1474.

[23]   Di Stadio, C.S., Altieri, F., Miselli, G., Elce, A., Severino, V., Chambery, A., Quagliariello, V., Villano, V., de Dominicis, G., Rippa, E. and Arcari, P. (2016) AMP18 Interacts with the Anion Exchanger SLC26A3 and Enhances Its Expression in Gastric Cancer Cells. Biochimie, 121, 151-160.

[24]   Federico, A., Pallante, P., Bianco, M., Ferraro, A., Esposito, F., Monti, M., Cozzolino, M., Keller, S., Fedele, M., Leone, V., Troncone, G., Chiariotti, L., Pucci, P. and Fusco, A. (2009) Chromobox Protein Homologue 7 Protein, with Decreased Expression in Human Carcinomas, Positively Regulates E-Cadherin Expression by Interacting with the Histone Deacetylase 2 Protein. Cancer Research, 69, 7079-7087.

[25]   Tsunematsu, T., Kudo, Y., Iizuka, S., Ogawa, I., Fujita, T., Kurihara, H., Abiko, Y. and Takata, T. (2009) RUNX3 Has an Oncogenic Role in Head and Neck Cancer. PLoS ONE, 4, e5892.