Back
 ENG  Vol.9 No.11 , November 2017
Effects of Inter-Particle Frictional Coefficients on Evolution of Contact Networks in Landslide Process
Abstract: During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to investigate the evolution of contact networks in mesoscale during the sliding process of slope. A slope model was established using the discrete element method (DEM), and influences of inter-particle frictional coefficients with four different values on dynamic landslides were studied. Both macroscopic analysis on slope landslide and mesoanalysis on structure evolution of contact networks, including the average degree, clustering coefficient and N-cycle, were done during the process of landslide. The analysis results demonstrate that: 1) with increasing inter-particle frictional coefficients, the displacement of slope decreases and the stable angle of slope post-failure increases, which is smaller than the peak internal frictional angle; 2) the average degree decreases with the increase of inter-particle frictional coefficient. When the displacement at the toe of the slope is smaller, the average degree there changes more greatly with increasing inter-particle frictional coefficient; 3) during the initial stage of landslide, the clustering coefficient reduces sharply, which may leads to easily slide of slope. As the landslide going on, however, the clustering coefficient increases denoting increasing stability with increasing inter-particle frictional coefficients. When the inter-particle frictional coefficient is smaller than 0.3, its variation can affect the clustering coefficient and stable inclination of slope post-failure greatly; and 4) the number of 3-cycle increases, but 4-cycle and 5-cycle decrease with increasing inter-particle frictional coefficients.
Cite this paper: Jiang, L. , Liu, E. , Tian, J. , Jiang, X. (2017) Effects of Inter-Particle Frictional Coefficients on Evolution of Contact Networks in Landslide Process. Engineering, 9, 917-936. doi: 10.4236/eng.2017.911055.
References

[1]   Laouafa, F. and Darve, F. (2002) Modelling of Slope Failure by a Material Instability Mechanism. Computers & Geotechnics, 29, 301-325.
https://doi.org/10.1016/S0266-352X(01)00030-1

[2]   Bishop, A.W. (1955) The Use of the Slip Circle in Stability Analysis of Slopes. Géotechnique, 5, 7-17.
https://doi.org/10.1680/geot.1955.5.1.7

[3]   Sarma, S.K. (1979) Stability Analysis of Embankments and Slopes. Journal of Geotechnical Engineering Division, ASCE, 105, 1511-1524.

[4]   Clough, R.W. and Woodward, R.J. (1967) Analysis of Embankment Stresses and Deformations. Soil Mechanics & Foundation Division, ASCE, 93, 529-549.

[5]   Cundall, P.A. and Strack, O.D.L. (1979) A Discrete Numerical Mode for Granular Assemblies. Géotechnique, 29, 47-65.
https://doi.org/10.1680/geot.1979.29.1.47

[6]   Potyondy, D.O. and Cundall, P.A. (2004) A Bonded-Particle Model for Rock. International Journal of Rock Mechanics & Mining Sciences, 41, 1329-1364.
https://doi.org/10.1016/j.ijrmms.2004.09.011

[7]   Li, X.P., He, S.M., Luo, Y. and Wu, Y. (2012) Simulation of the Sliding Process of Donghekou Landslide Triggered by the Wenchuan Earthquake Using a Distinct Element Method. Environmental Earth Sciences, 65, 1049-1054.
https://doi.org/10.1007/s12665-011-0953-8

[8]   Fu, Z.Z., Chen, S.S. and Liu, S.H. (2016) Discrete Element Simulations of Shallow Plate-Load Tests. International Journal of Geomechanics, 16, Article ID: 04015077.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000588

[9]   Camones Jr., L., E.D.A.V., Figueiredo, R.P.D. and Velloso, R.Q. (2013) Application of the Discrete Element Method for Modeling of Rock Crack Propagation and Coalescence in the Step-path Failure Mechanism. Engineering Geology, 153, 80-94.
https://doi.org/10.1016/j.enggeo.2012.11.013

[10]   Kun, F.,Varga, I., Lennartz-Sassinek, S. and Main, I.G. (2014) Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock. Physical Review Letters, 112, Article ID: 065501.
https://doi.org/10.1103/PhysRevLett.112.065501

[11]   Wang, C., Tannant, D.D. and Lilly, P.A. (2003) Numerical Analysis of the Atability of Heavily Jointed Rock Slopes Using PFC2D. International Journal of Rock Mechanics & Mining Sciences, 40, 415-424.
https://doi.org/10.1016/S1365-1609(03)00004-2

[12]   Scholtès, L. and Donzé, F.V. (2015) A DEM Analysis of Step-Path Failure in Jointed Rock Slopes. Comptes Rendus Mécanique, 343, 155-165.
https://doi.org/10.1016/j.crme.2014.11.002

[13]   Chen, H. and Liu, S.H. (2007) Slope Failure Characteristics and Stabilization Methods. Canadian Geotechnical Journal, 44, 377-391.
https://doi.org/10.1139/t06-131

[14]   Smith, D.A. and White, D.R. (1992) Structure and Dynamics of the Global Economy Network Analysis of International Trade 1965-1980. Social Forces, 70, 857-893.
https://doi.org/10.1093/sf/70.4.857

[15]   Doreian, P. and Mrvar, A. (2009) Partitioning Signed Social Networks. Social Networks, 31, 1-11.
https://doi.org/10.1016/j.socnet.2008.08.001

[16]   Andreasen, V. (2011) The Final Size of an Epidemic and Its Relation to the Basic Reproduction Number. Bulletin of Mathematical Biology, 73, 2305-2321.
https://doi.org/10.1007/s11538-010-9623-3

[17]   Amaral, L. and Ottino, J.M. (2004) Complex Networks, Augmenting the Framework for the Study of Complex Systems. Physics of Condensed Matter, 38, 147-162.

[18]   Peters, J.F., Muthuswamy, M., Wibowo, J. and Tordesillas, A. (2005) Characterization of Force Chains in Granular Material. Physical Review E, 72, Article ID: 041307.
https://doi.org/10.1103/PhysRevE.72.041307

[19]   Walker, D.M. and Tordesillas, A. (2010) Topological Evolution in Dense Granular Materials: A Complex Networks Perspective. International Journal of Solids & Structures, 47, 624-639.
https://doi.org/10.1016/j.ijsolstr.2009.10.025

[20]   Tordesillas, A., O’Sullivan, P. and Walker, D.M. (2010) Evolution of Functional Connectivity in Contact and Force Chain Networks: Feature Vectors, K-Cores and Minimal Cycles. Comptes Rendus Mécanique, 338, 556-569.
https://doi.org/10.1016/j.crme.2010.09.004

[21]   Papadopoulos, L., Puckett, J.G., Daniels, K.E. and Bassett, D.S. (2016) Evolution of Network Architecture in a Granular Material under Compression. Physical Review E, 94, Article ID: 032908.
https://doi.org/10.1103/PhysRevE.94.032908

[22]   Jiang, M. and Murakami, A. (2012) Distinct Element Method Analyses of Idealized Bonded-Granulate Cut Slope. Granular Matter, 14, 393-410.
https://doi.org/10.1007/s10035-012-0347-y

[23]   Zhang, L.W. (2012) Influence of Anisotropic Internal Friction Angle on the Stability of Uniform Soil Slopes. Applied Mechanics & Materials, 170-173, 270-273.
https://doi.org/10.4028/www.scientific.net/AMM.170-173.270

[24]   Utili, S. and Nova, R. (2008) DEM Analysis of Bonded Granular Geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 32, 1997-2031.
https://doi.org/10.1002/nag.728

[25]   Viratjandr, C. and Michalowski, R.L. (2006) Limit Analysis of Submerged Slopes Subjected to Water Drawdown. Canadian Geotechnical Journal, 43, 802-814.
https://doi.org/10.1139/t06-042

[26]   Dorogovtsev, S.N. and Mendes, J.F.F. (2004) The Shortest Path to Complex Networks. Physics, 71, 47-53.

[27]   Costa, L.D.F., Rodrigues, F.A., Travieso, G. and Boas, P.R.V. (2007) Characterization of Complex Networks: a Survey of Measurements. Advances in Physics, 56, 167-242.
https://doi.org/10.1080/00018730601170527

[28]   Bollobás, B. (1960) Modern Graph Theory. Springer, New York.

 
 
Top