Back
 JEP  Vol.8 No.12 , November 2017
Development of Global Cropland Agreement Level Analysis by Integrating Pixel Similarity of Recent Global Land Cover Datasets
Abstract: Global cropland monitoring is important when considering tactical strategies for achieving food sustainability. Different global land cover (GLC) datasets providing cropland information have already been published and they are used in many applications. The different data input methods, classification techniques, class definitions and production years among the different GLC datasets make them all independently useful sources of information. This study attempted to produce a cropland agreement level (CAL) analysis based on the integration of several cropland datasets to more accurately estimate cropland area distribution. Estimating cropland area and how it has changed on a national level was done by converting the level of cropland agreement into percentages with an existing cropland fraction map. A pre-analysis showed that the four GLC datasets used in the 2005 and 2010 groups had similar year input data acquisitions. Therefore, we placed these four datasets (GlobCover, MODIS LC, GLCNMO and ESACCI LC) into 2005 and 2010 year-groups and selected them to process dataset integration through a CRISP approach. The results of this process proposed four agreement levels for this CAL analysis, and the model correlation was converted into percentage values. The cropland estimate results from the CAL analysis were observed along with FAO data statistics and showed the highest accuracy, with a 0.70 and 0.71 regression value for 2005 and 2010 respectively. In the cropland area change analysis, this CAL change analysis had the highest level of accuracy when describing the total size of cropland area change from 2005 and 2010 when compared to other individual original GLC datasets.
Cite this paper: Sakti, A. , Takeuchi, W. and Wikantika, K. (2017) Development of Global Cropland Agreement Level Analysis by Integrating Pixel Similarity of Recent Global Land Cover Datasets. Journal of Environmental Protection, 8, 1509-1529. doi: 10.4236/jep.2017.812093.
References

[1]   FAO, IFAD, and WFP (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Target: Taking Stock of Uneven Progress. FAO, Rome.

[2]   FAO (2016) The State of Food and Agriculture. Climate Change, Agriculture and Food Security. FAO, Rome.

[3]   See, L., Fritz, S., You, L., Ramankutty, N., Herrero, M., Justice, C., Becker-Reshef, I., Thornton, P., Erb, K., Gong, P., Tang, H., van der Velde, M., Ericksen, P., McCallum, I., Kraxner, F. and Obersteiner, M. (2015) Improved Global Cropland Data as an Essential Ingredient for Food Security. Global Food Security, 4, 37-45.
https://doi.org/10.1016/j.gfs.2014.10.004

[4]   Leff, B., Ramankutty, N. and Foley, J.A. (2004) Geographic Distribution of Major Crops across the World. Global Biogeochemical Cycles, 18, GB1009.

[5]   Doll, P. and Siebert, S. (2002) Global Modeling of Irrigation Water Requirements. Water Resources Research, 38.
https://doi.org/10.1029/2001WR000355

[6]   Grekousis, G., Mountrakis, G. and Kavouras, M. (2015) An Overview of 21 Global and 43 Regional Land-Cover Mapping Products. International Journal of Remote Sensing, 36, 5309-5335.
https://doi.org/10.1080/01431161.2015.1093195

[7]   Fritz, S. and See, L. (2008) Identifying and Quantifying Uncertainty and Spatial Disagreement in the Comparison of Global Land Cover for Different Applications. Global Change Biology, 14, 1057-1075.
https://doi.org/10.1111/j.1365-2486.2007.01519.x

[8]   Ran, Y., Li, X. and Lu, L. (2010) Evaluation of Four Remote Sensing Based Land Cover Products over China. International Journal of Remote Sensing, 31, 391-401.
https://doi.org/10.1080/01431160902893451

[9]   Bai, Y., Feng, M., Jiang, H., Wang, J., Zhu, Y. and Liu, Y. (2014) Assessing Consistency of Five Global Land Cover Data Sets in China. Remote Sensing, 6, 8739-8759.
https://doi.org/10.3390/rs6098739

[10]   Giri, C., Zhu, Z. and Reed, B. (2005) A Comparative Analysis of the Global Land Cover 2000 and MODIS Land Cover Data Sets. Remote Sensing of Environment, 94, 123-132.
https://doi.org/10.1016/j.rse.2004.09.005

[11]   Tsendbazar, N., De Bruin, S., Fritz, S. and Herold, M. (2015) Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sensing, 7, 15804-15821.

[12]   McCallum, I., Obersteiner, M., Nilsson, S. and Shvidenko, A. (2006) A Spatial Comparison of Four Satellite Derived 1 km Global Land Cover Datasets. International Journal of Applied Earth Observation and Geoinformation, 8, 246-255.
https://doi.org/10.1016/j.jag.2005.12.002

[13]   Nakaegawa, T. (2011) Uncertainty in Land Cover Datasets for Global Land-Surface Models Derived from 1-km Global Land Cover Datasets. Hydrological Processes, 25, 2703-2714.
https://doi.org/10.1002/hyp.8011

[14]   Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z. and Yang, L. (2000) Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 km AVHRR Data. International Journal of Remote Sensing, 21, 1303-1330.
https://doi.org/10.1080/014311600210191

[15]   Hansen, M.C., Defries, R.S., Townshend, J.R.G. and Sohlberg, R. (2000) Global Land Cover Classification at 1 km Spatial Resolution Using a Classification Tree Approach. International Journal of Remote Sensing, 21, 1331-1364.
https://doi.org/10.1080/014311600210209

[16]   Bartholomé, E. and Belward, A.S. (2005) GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data. International Journal of Remote Sensing, 26, 1959-1977.
https://doi.org/10.1080/01431160412331291297

[17]   Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V. and Perez, J.R. (2009) GLOBCOVER 2009 Products Description and Report. Toulouse, France.

[18]   Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, X. (2010) MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sensing of Environment, 114, 168-182.
https://doi.org/10.1016/j.rse.2009.08.016

[19]   Tateishi, R., Uriyangqai, B., Al-Bilbisi, H., Ghar, M.A., Tsend-ayush, J., Kobayashi, T., Kasimu, A., Hoan, N.T., Shalaby, A., Alsaaideh, B., Enkhzaya, T., Gegentana and Sato, H.P. (2011) Production of Global Land Cover Data—GLCNMO. International Journal of Digital Earth, 4, 24-49.
https://doi.org/10.1080/17538941003777521

[20]   Tateishi, R., Hoan, N.T., Kobayashi, T., Alsaaideh, B., Tana, G. and Phong, D.X. (2014) Production of Global Land Cover Data—GLCNMO 2008. Journal of Geography and Geology, 6, 99-122.
https://doi.org/10.5539/jgg.v6n3p99

[21]   CCI-LC (2014) Land Cover CCI: Product User Guide Version 2. Louvain-la-Neuve, Belgium.

[22]   Fritz, S., See, L., Mccallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-Sichra, U., Herrero, M., Becker-Reshef, I., Justice, Hansen, M., Gong, P., Abdel, A.S., Cipriani, A., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S.C., Gomez, A., Haffani, M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, A., Ortner, S., Rajak, D.R., Rocha, J., Schepaschenko, D., Schepaschenko, M., Terekhov, A., Tiangwa, A., Vancutsem, C., Vintrou, E., Wenbin, W., van der Velde, M., Dunwoody, A., Kraxner, F. and Obersteiner, M. (2015) Mapping Global Cropland and Field Size. Global Change Biology, 21, 1980-1992.
https://doi.org/10.1111/gcb.12838

[23]   Fritz, S., Mccallum, I., Schill, C., Perger, C., Grillmayer, R., Achard, F., Kraxner, F. and Obersteiner, M. (2009) Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sensing, 1, 345-354.
https://doi.org/10.3390/rs1030345

[24]   See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A., Perger, C., Schill, C., Zhao, Y., Maus, V., Siraj, M.A., Albrecht, F., Cipriani, A., Vakolyuk, M., Garcia, A., Rabia, A.H., Singha, K., Marcarini, A.A., Kattenborn, T., Hazarika, R., Schepaschenko, M., van der Velde, M., Kraxner, F. and Obersteiner, M. (2015) Building a Hybrid Land Cover Map with Crowdsourcing and Geographically Weighted Regression. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 48-56.
https://doi.org/10.1016/j.isprsjprs.2014.06.016

[25]   Jung, M., Henkel, K., Herold, M. and Churkina, G. (2006) Exploiting Synergies of Global Land Cover Products for Carbon Cycle Modeling. Remote Sensing of Environment, 101, 534-553.
https://doi.org/10.1016/j.rse.2006.01.020

[26]   Tchuenté, A.T.K., Roujean, J.L. and de Jong, S.M. (2011) Comparison and Relative Quality Assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP Land Cover Data Sets at the African Continental Scale. International Journal of Applied Earth Observation and Geoinformation, 13, 207-219.
https://doi.org/10.1016/j.jag.2010.11.005

[27]   Zhang, N. and Tateishi, R. (2013) Integrated Use of Existing Global Land Cover Datasets for Producing a New Global Land Cover Dataset with a Higher Accuracy: A Case Study in Eurasia. Advances in Remote Sensing, 2, 365-372.
https://doi.org/10.4236/ars.2013.24039

[28]   Di Gregorio, A. (2016) Land Cover Classification System: Classification Concepts. Software Version 3.

[29]   Herold, M., Woodcock, C.E., Di Gregorio, A., Mayaux, P., Belward, A.S., Latham, J. and Schmullius, C.C. (2006) A Joint Initiative for Harmonization and Validation of Land Cover Datasets. IEEE Transactions on Geoscience and Remote Sensing, 44, 1719-1727.
https://doi.org/10.1109/TGRS.2006.871219

[30]   Pflugmacher, D., Krankina, O.N., Cohen, W.B., Friedl, M.A., Sulla-Menashe, D., Kennedy, R.E., Nelson, P., Loboda, T.V., Kuemmerle, T., Dyukarev, E., Elsakov, V. and Kharuk, V.I. (2011) Comparison and Assessment of Coarse Resolution Land Cover Maps for Northern Eurasia. Remote Sensing of Environment, 115, 3539-3553.
https://doi.org/10.1016/j.rse.2011.08.016

[31]   Hansen, M.C. and Reed, B. (2000) A Comparison of the IGBP DISCover and University of Maryland 1 km Global Land Cover Products. International Journal of Remote Sensing, 21, 1365-1373.
https://doi.org/10.1080/014311600210218

[32]   Herold, M., Mayaux, P., Woodcoc, K.C.E., Baccini, A. and Schmullius, C. (2008) Some Challenges in Global Land Cover Mapping: An Assessment of Agreement and Accuracy in Existing 1 km Datasets. Remote Sensing of Environment, 112, 2538- 2556.
https://doi.org/10.1016/j.rse.2007.11.013

[33]   See, L.M. and Fritz, S. (2006) A Method to Compare and Improve Land Cover Datasets: Application to the GLC-2000 and MODIS Land Cover Products. IEEE Transactions on Geoscience and Remote Sensing, 44, 1740-1746.
https://doi.org/10.1109/TGRS.2006.874750

[34]   Fritz, S. and See, L. (2005) Comparison of Land Cover Maps Using Fuzzy Agreement. International Journal of Geographical Information Science, 19, 787-807.
https://doi.org/10.1080/13658810500072020

[35]   Vancutsem, C., Marinho, E., Kayitakire, F., See, L. and Fritz, S. (2013) Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale. Remote Sensing, 5, 19-41.
https://doi.org/10.3390/rs5010019

[36]   Chen, J., Ban, Y. and Li, S. (2014) China: Open Access to Earth Land-Cover Map. Nature, 514, 434.
https://doi.org/10.1038/514434c

[37]   Waldner, F., Fritz, S., Di Gregorio, A., Plotnikov, D., Bartalev, S., Kussul, N., Gong, P., Thenkabail, P., Hazeu, G., Klein, I., Löw, F., Miettinen, J., Dadhwal, V.K., Lamarche, C., Bontemps, S. and Defourny, P. (2016) A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data, 1, 3.
https://doi.org/10.3390/data1010003

[38]   As-syakur, A.R. (2011) Perubahan penggunaan lahan di provinsi Bali. [Land Use Changes in Bali Province, Indonesia.] Ecotrophic, 6, 1-7.

[39]   Suputra, D.P.A., Ambarwati, I.G.A. and Tenaya, I.M.N. (2012) Faktor-faktor yang mempengaruhi alih fungsi lahan studi kasus di Subak Daksina , Desa Tibubeneng, Kecamatan Kuta Utara, Kabupaten Badung. [Factors That Affect Land Use Changes. A Study Case in Subak Daksina, Tibubeneng Vilage, Kuta Utara Subdistrict, Badung District, Bali Province.] E-Journal Agribisnis dan Agrowisata, 1, 61-68.

 
 
Top