Back
 OJFD  Vol.7 No.4 , December 2017
Decisive Parameters for Backwater Effects Caused by Floating Debris Jams
Abstract:
The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parameters. For the more precise detection of the influence of both parameters the results of different hydraulic model test series at the Laboratory of Hydraulic and Water Resources Engineering of the Technical University of Munich concerning debris jams at spillways as well as at racks for the retention of wooden debris were uniformly evaluated. On the one hand a significant increase of the backwater effect with a rising Froude number of the approach flow could be shown. This is in good correlation to recent test results for debris jams at retention racks at the Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Technology Zurich. On the other hand a significant increase of the backwater effect could also be shown for a rising debris density. However, the test results also show that significantly different backwater effects can occur in different test runs with identical test conditions. These differences are a result of the randomness of debris jam development, and therefore, a more exact quantification of the dependence of the backwater effect on the Froude number of the approach flow and on the debris density is not considered useful for the present results.
Cite this paper: Hartlieb, A. (2017) Decisive Parameters for Backwater Effects Caused by Floating Debris Jams. Open Journal of Fluid Dynamics, 7, 475-484. doi: 10.4236/ojfd.2017.74032.
References

[1]   Bocchiola, D., Rulli, M.C. and Rosso, R. (2006) Transport of Large Woody Debris in the Presence of Obstacles. Geomorphology, 76, 166-178.
https://doi.org/10.1016/j.geomorph.2005.08.016

[2]   Bocchiola, D., Rulli, M.C. and Rosso, R. (2008) A Flume Experiment on the Formation of Wood Jams in Rivers. Water Resources Research, 44, W02408.
https://doi.org/10.1029/2006WR005846

[3]   Haga, H., Kumagai, T., Otsuki, K. and Ogawa, S. (2002) Transport and Retention of Coarse Woody Debris in Mountain Streams: An In Situ Field Experiment of Log Transport and Field Survey of Coarse Woody Debris Distribution. Water Resources Research, 38, 1029-1044.
https://doi.org/10.1029/2001WR001123

[4]   Knauss, J. (1995) Treibholzfänge am Lainbach in Benediktbeuern und am Arzbach (ein neues Element im Wildbachausbau). [Retention Racks for Wooden Debris at two Torrents in the Bavarian Alps (a New Protection Measure for Torrent Control).] Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft der Technischen Universität München, Nr. 76, 23-66.

[5]   Weitbrecht, V. and Schmocker, L. (2012) Driftwood Retention in Large Rivers—A New Concept. Proceedings of River Flow 2012 Costa Rica, San Jose, 9-12 September, Taylor & Francis Group, London, 1073-1080.

[6]   Schmocker, L. and Hager, W.H. (2013) Scale Modeling of Wooden Debris Accumulation at a Debris Rack. Journal of Hydraulic Engineering, 139, 827-836.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000714

[7]   Simonett, S., Detert, M. and Weitbrecht, V. (2012) Drift Wood Retention to Minimize Flood Risk for the City of Zurich—Physical Experiments. Proceedings of 12th congress INTERPRAEVENT 2012, Grenoble, France, 23-26 April, 803-810.

[8]   Diehl, T.H. (1997) Potential Drift Accumulation at Bridges, Report FHWA-RD-97-028, U.S. Department of Transportation, Federal Highway Administration, Washington DC.

[9]   Schmocker, L. and Hager, W.H. (2011) Probability of Drift Blockage at Bridge Decks. Journal of Hydraulic Engineering, 137, 470-479.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000319

[10]   Godtland, K. and Tesaker, E. (1994) Clogging of Spillways by Trash. Proceedings of 18th ICOLD Congress, Q.68-R.36, Durban, South Africa, 7-11 November, 543-557.

[11]   Johansson, N. and Cederström, M. (1995) Floating Debris and Spillways. , Proceedings Published by ASCE (Reprinted from WATERPOWER 95), 2106-2115, Proceedings of the International Conference on Hydropower, San Francisco, USA, 25-28 July 1995.

[12]   Lariviere, R., Leger, P., Tinawi, R. and Roussel, M. (1997) Safety of Gravity Dams and Spillways against Floods. Session 1: The Saguenay Floods, 1.1-1.14, Proceedings of the 9th Canadian Dam Safety Conference, 1.17-1.30, Montreal, Canada, 22-25 September.

[13]   Yang, J., Johansson, N. and Cederström, M. (2009) Handling Reservoir Floating Debris for Safe Spillway Discharge of Extreme Floods—Laboratory Investigations. Proceedings of 23rd ICOLD Congress, Q.91-R.4, Brasilia, Brazil, 25-29 May 2009.

[14]   Hartlieb, A. (2014) Maßgebende Parameter für den Aufstau durch Schwemmholzverklausungen, Internationales Symposium. [Decisive Parameters for Backwater Effects caused by Floating Debris Jams.] Wasserund Flussbau im Alpenraum, 25.-27. Juni 2014, Zürich, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Nr. 228, Band 2, 485-493.

[15]   Hartlieb, A. (2015) Schwemmholz in Fließgewässern - Gefahren und Lösungsmöglichkeiten. [Wooden Debris in Rivers - Hazards and Solutions.] Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft der Technischen Universität München, Nr. 133.

[16]   Hartlieb, A. (2012) Large Scale Hydraulic Model Tests for Floating Debris Jams at Spillways. Proceedings on USB-Stick, C18, Proceedings of the 2nd IAHR Europe Congress “Water Infinitely Deformable But Still Limited”, 27th-29th of June 2012, Munich.

 
 
Top