Back
 JMP  Vol.2 No.10 , October 2011
Structure Transformations in the Polycrystalline (Ti,Nb)3Al Alloy under Shock-Wave Loading
Abstract: Structure transformations in the two-phase (Ti, Nb)3Al alloy, induced by shock-wave loading, were studied. The samples were subjected to an impact of a steel plate. The maximum pressure on the samples’ surfaces was 100 GPa, while the maximum temperature was 573 K. The β0→α2 phase transformation occurred during strong deformations. High temperature rectilinear dislocations (such types of dislocations usually could arise at 1073 K) with the c-component, which occasionally formed slip bands, were located at the α2-phase grains after the shock. The deformation α2-phase twins were not observed.
Cite this paper: nullN. Kazantseva and E. Shorokhov, "Structure Transformations in the Polycrystalline (Ti,Nb)3Al Alloy under Shock-Wave Loading," Journal of Modern Physics, Vol. 2 No. 10, 2011, pp. 1141-1145. doi: 10.4236/jmp.2011.210141.
References

[1]   E. I. Zababakhin, “Some Problems of Explosion Gas Dynamics,” Russian Research Institute of Technical Physics—Russian Federal Nuclear Center, Snezhinsk, 1997, 207 Pages.

[2]   Z. Q. Wang, I. J. Beyerlein and R. LeSar, “Dislocation Motion in High Strain-Rate Deformation,” Philosophical Magazine A, Vol. 87, No. 16-17, 2007, pp. 2263-2279. doi:10.1080/14786430601153422

[3]   B. A. Remington, P. Allen, E. M. Bringa, J. Hawreliak, D. Ho, K. T. Lorenz, H. Lorenzana, J. M. Mc Naney, M. A. Meyers, S. W. Pollaine, K. Rosolankova, B. Sadik, M. S. Schneider, D. Swift, J. Wark and B. Yaakobi, “Material Dynamics under Extreme Conditions of Pressure and Strain Rate,” Materials Science and Technology, Vol. 22, No. 4, 2006, pp. 474-488. doi:10.1179/174328406X91069

[4]   M. H Yoo, C. L. Fu and J. K. Lee, “Deformation Twinning in Metals and Ordered Intermetallics-Ti and Ti- Aluminides,” Journal de Physique III, Vol. 1, 1991, pp. 1065-1067. doi:10.1051/jp3:1991172

[5]   M. Ikebuchi, H. Inui, Y. Shirai, M. Yamaguchi, S. Fujita and T. Nishisako, “Microstructures of Some Intermetallic Compounds Deformed by Impact Loading,” Materials Science and Engineering, Vol. A192-193, 1995, pp. 289- 304. doi:10.1016/0921-5093(94)03237-8

[6]   N. V. Kazantseva, B. A. Greenberg, A. A. Popov and E. V. Shorokhov, “Phase Transformations in Ni3Al, Ti3Al and Ti2AlNb Intermetallics under Shock-Wave Loading,” Journal de Physique IV France, Vol. 110, 2003, pp. 923-928. doi:10.1051/jp4:20020812

[7]   K. Kishida, Y. Takahama and H. Inui, “Deformation Twinning in Single Crystals of a D019 Compound with an Off-Stoichiometric Composition (Ti-36.5 at.%Al),” Acta Materialia, Vol. 52, No. 16, 2004, pp. 4941-4952. doi:10.1016/j.actamat.2004.06.051

[8]   M. A. Morris and D. G. Morris, “Strain Localization, Slip-Band Formation and Twinning Associated with Deformation of a Ti-24 at.% Al─11 at.% Nb Alloy,” Philosophical Magazine A, Vol. 63, 1991; pp. 1175-1178. doi:10.1080/01418619108205576

[9]   L. E. Kar’kina and L. I. Yakovenkova, “Temperature Anomalies of Deformation Behavior and Dislocation Structure of Ti3Al: A Review,” Fizika Metallov i Metallovedenie, Vol. 108, No. 2, 2009, pp. 188-216. doi:10.1134/S0031918X09080110

[10]   S. A. Court, J. P. A. Lofvander, M. H. Loretto and H. L. Fraser, “The Influence of Temperature and Alloying Additions on the Mechanisms of Plastic Deformation of Ti3Al,” Philosophical Magazine A, Vol. 61, No. 1, 1990, pp. 109-139. doi:10.1080/01418619008235561

[11]   S. Suwas, R. K. Ray, A. K. Singh and S. Bhargava, “Evolution of Hot Rolling Textures in a Two-Phase (α2 + β) Ti3Al Base Alloy,” Acta Materialia, Vol. 47, No. 18, 1999, pp. 4585-4598. doi:10.1016/S1359-6454(99)00327-4

 
 
Top