Back
 IJMPCERO  Vol.6 No.4 , November 2017
Dose Comparison between Eclipse Dose Calculation and Fast Dose Calculator in Single- and Multi-Field Optimization Intensity-Modulated Proton Therapy Plans with Various Multi-Beams for Brain Cancer
Abstract: The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning system (TPS) and the fast dose calculation method (FDC) for single-field optimization (SFO) and multi-field optimization (MFO) IMPT plans. In addition, because some authors have reported dosimetric benefit of a proton arc therapy with ultimate multi-fields in recent years, we wanted to evaluate how the number of fields and beam angles affect the differences for IMPT plans. Therefore, for one brain cancer patient with a large heterogeneity, SFO and MFO IMPT plans with various multi-angle beams were planned by the TPS. Dose distributions for each IMPT plan were calculated by both the TPS’s conventional pencil beam algorithm and the FDC. The dosimetric parameters were compared between the two algorithms. The TPS overestimated 400 - 500 cGy (RBE) for minimum dose to the CTV relative to the dose calculated by the FDC. These differences indicate clinically relevant effect on clinical results. In addition, we observed that the maximum difference in dose calculated between the TPS and the FDC was about 900 cGy (RBE) for the right optic nerve, and this quantity also has a possibility to have a clinical effect. The major difference was not seen in calculations for SFO IMPT planning and those for MFO IMPT planning. Differences between the TPS and the FDC in SFO and MFO IMPT plans depend strongly on beam arrangement and the presence of a heterogeneous body. We advocate use of a Monte Carlo method in proton treatment planning to deliver the most precise proton dose in IMPT.
Cite this paper: Kohno, R. , Cao, W. , Yepes, P. , Bai, X. , Poenisch, F. , Grosshans, D. , Akimoto, T. and Mohan, R. (2017) Dose Comparison between Eclipse Dose Calculation and Fast Dose Calculator in Single- and Multi-Field Optimization Intensity-Modulated Proton Therapy Plans with Various Multi-Beams for Brain Cancer. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 6, 421-432. doi: 10.4236/ijmpcero.2017.64038.
References

[1]   Olsen, D.R., Bruland, O.S., Frykholm, G. and Norderhaug, I.N. (2007) Proton Therapy—A Systematic Review of Clinical Effectiveness. Radiotherapy Oncology, 83, 123-132.
https://doi.org/10.1016/j.radonc.2007.03.001

[2]   Pedroni, E., Bacher, R., Blattmann, H., Bohringer, T., Copay, A., Lomax, A., Lin, S., Munkel, G., Scheib, S., Schneider, U. and Tourovsky, A. (1995) The 200-MeV Proton Therapy Project at the Paul Scherrer Institute: Conceptual Design and Practical Realization. Medical Physics, 22, 37-53.
https://doi.org/10.1118/1.597522

[3]   Gillin, M.T., Sahoo, N., Bues, M., Ciangaru, G., Poenisch, F., Arjomandy, B., Martin, C., Titt, U., Suzuki, K., Smith, A.R. and Zhu, X.R. (2010) Commissioning of the Discrete Spot Scanning Proton Beam Delivery System at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Medical Physics, 37, 154-163.
https://doi.org/10.1118/1.3259742

[4]   Kohno, R., Hotta, K., Dohmae, T., Matsuzaki, Y., Nishio, T., Akimoto, T., Tachikawa, T., Asaba, T., Inoue, J., Ochi, T., Yamada, M. and Miyanaga, H. (2017) Development of Continuous Line Scanning System Prototype for Proton Beam Therapy. International Journal of Particle Therapy, 3, 429-438.
https://doi.org/10.14338/IJPT-16-00017.1

[5]   Kooy, H.M. and Grassberger, C. (2015) Intensity Modulated Proton Therapy. British Journal of Radiology, 88, Article ID: 20150195.
https://doi.org/10.1259/bjr.20150195

[6]   Frank, S.J., Cox, J.D., Gillin, M., Mohan, R., Garten, A.S., Rosenthal, D.I., Gunn, G.B., Weber, R.S., Kies, M.S., Lewin, J.S., Munsell, M.F., Palmer, M.B., Sahoo, N., Zhang, X., Liu, W. and Zhu, X.R.(2014) Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice. International Journal of Radiation Oncology Biology Physics, 89, 846-853.
https://doi.org/10.1016/j.ijrobp.2014.04.019

[7]   Hong, L., Goitein, M., Bucciolini, M., Comity, R., Gottschalk, B., Rosenthal, S., Sebago, C. and Urie, M. (1996) A Pencil Beam Algorithm for Proton Dose Calculations. Physics in Medicine and Biology, 41, 1305-1330.
https://doi.org/10.1088/0031-9155/41/8/005

[8]   Schaffner, B., Pedroni, E. and Lomax, A. (1999) Dose Calculation Model for Proton Treatment Planning Using a Dynamic Beam Delivery System: An Attempt to Include Density Heterogeneity Effects in the Analytical Dose Calculation. Physics in Medicine and Biology, 44, 27-41.
https://doi.org/10.1088/0031-9155/44/1/004

[9]   Kohno, R., Sakae, T., Takada, Y., Matsumoto, K., Matsuda, H., Nohtomi, A., Terunuma, T. and Tsunashima, Y. (2002) Simplified Monte Carlo Dose Calculation for Therapeutic Proton Beams. Japan Journal of Applied Physics, 41, L294-L297.
https://doi.org/10.1143/JJAP.41.L294

[10]   Kohno, R., Takada, Y., Sakae, T., Terunuma, T., Matsumoto, K., Nohtomi, A. and Matsuda, H. (2003) Experimental Evaluation of Validity of Simplified Monte Carlo Method in Proton Dose Calculations. Physics in Medicine and Biology, 48, 1277-1288.
https://doi.org/10.1088/0031-9155/48/10/303

[11]   Hotta, K., Kohno, R., Takada, Y., Hara, Y., Tansho, R., Himukai, T., Kameoka, S., Matsuura, T., Nishio, T. and Ogino, T. (2010) Improved Dose-Calculation Accuracy in Proton Treatment Planning Using a Simplified Monte Carlo Method Verified with Three-Dimensional Measurements in an Anthropomorphic Phantom. Physics in Medicine and Biology, 55, 3545-3556.
https://doi.org/10.1088/0031-9155/55/12/018

[12]   Paganetti, H., Jiang, H., Parodi, K., Slopsema, R. and Engelsman, M. (2008) Clinical Implementation of Full Monte Carlo Dose Calculation in Proton Beam Therapy. Physics in Medicine and Biology, 53, 4825-4853.
https://doi.org/10.1088/0031-9155/53/17/023

[13]   Agostinelli, S., Allison, J., Amako, K., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behnerl, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Aqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Cadenas, J.J.G., Gonzalez, I., Abril, G.G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Freitas, P.M.D., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilova, S.A., Salvo, E.D., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Tehrani, E.S., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H. and Zschiesche, D. (2003) GEANT4—A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research Section A, 506, 250-303.
https://doi.org/10.1016/S0168-9002(03)01368-8

[14]   Los Alamos National Laboratory (2002) MCNPX User’s Manual Version 2.4.0. LANL Report LA-CP-02-408.

[15]   Fippel, M. and Soukup, M. (2004) A Monte Carlo Dose Calculation Algorithm for Proton Therapy. Medical Physics, 31, 2263-2273.
https://doi.org/10.1118/1.1769631

[16]   Yepes, P., Randeniya, S., Taddei, P.J. and Newhauser, W.D. (2009) A Track Repeating Algorithm for Fast Monte Carlo Dose Calculations of Proton Radiotherapy. Nuclear Technology, 168, 334-337.
https://doi.org/10.13182/NT09-A9298

[17]   Yepes, P., Randeniya, S., Taddei, P.J. and Newhauser, W.D. (2009) Monte Carlo Fast Dose Calculator for Proton Radiotherapy: Application to a Voxelized Geometry Representing a Patient with Prostate Cancer. Physics in Medicine and Biology, 54, N21-N28.
https://doi.org/10.1088/0031-9155/54/1/N03

[18]   Yepes, P., Eley, J.G., Liu, A., Mirkovic, D., Randeniya, S., Titt, U. and Mohan, R. (2016) Validation of a Track Repeating Algorithm for Intensity Modulated Proton Therapy: Clinical Cases Study. Physics in Medicine and Biology, 61, 2633-2645.
https://doi.org/10.1088/0031-9155/61/7/2633

[19]   Mizutani, S., Takada, Y., Kohno, R., Hotta, K., Tansho, R. and Akimoto, T. (2016) Application of Dose Kernel Calculation Using a Simplified Monte Carlo Method to Treatment Plan for Scanned Proton Beams. Journal of Applied Clinical Medical Physics, 17, 315-327.
https://doi.org/10.1120/jacmp.v17i2.5747

[20]   Frank, S.J., Cox, J.D., Gillin, M., Mohan, R., Garden, A.S., Rosenthal, D.I., Gunn, G.B., Weber, R.S., Kies, M.S., Lewin, J.S., Munsell, M.F., Palmer, M.B., Sahoo, N., Zhang, X., Liu, W. and Zhu, X.R. (2014) Multi-Field Optimization Intensity-Modulated Proton Therapy for Head and Neck Tumors—A Translation to Practice. International Journal of Radiation Oncology Biology Physics, 89, 846-853.
https://doi.org/10.1016/j.ijrobp.2014.04.019

[21]   Rechner, L.A., Howell, R.M., Zhang, R., Etzel, C., Lee, A.K. and Newhauser, W.D. (2012) Risk of Radiogenic Second Cancers Following Volumetric Modulated Arc Therapy and Proton Arc Therapy for Prostate Cancer. Physics in Medicine and Biology, 57, 7117-7132.
https://doi.org/10.1088/0031-9155/57/21/7117

[22]   Rah, J.E., Kim, G.Y., Oh, D.H., Kim, T.H., Kim, J.W., Kim, D.Y., Park, S.Y. and Shin, D. (2016) A Treatment Planning Study of Proton Arc Therapy for Para-Aortic lymph Node Tumors: Dosimetric Evaluation of Conventional Proton Therapy, Proton Arc Therapy, and Intensity Modulated Radiotherapy. Radiation Oncology, 11, 140.
https://doi.org/10.1186/s13014-016-0717-4

[23]   Shaw, E., Kline, R., Gillian, M., Souhami, L., Hirschfeld, A., Dinapoli, R. and Martin, L. (1993) Radiation Therapy Oncology Group: Radio Surgery Quality Assurance Guidelines. International Journal of Radiation Oncology Biology Physics, 27, 1231-1239.
https://doi.org/10.1016/0360-3016(93)90548-A

[24]   Cao, W., Lim, G.J., Lee, A., Li, Y., Liu, W., Shu, X.R. and Zhang, X. (2012) Uncertainty Incorporated Beam Angle Optimization for IMPT Treatment Planning. Medical Physics, 39, 5248-5256.
https://doi.org/10.1118/1.4737870

[25]   Zaghian, M., Cao, W., Liu, W., Carder, L., Randeniya, S., Mohan, R. and Lim, G. (2017) Comparison of Linear and Nonlinear Programming Approaches for “Worst Case Dose” and “Minimax” Robust Optimization of intensity-Modulated Proton Therapy Dose Distributions. Journal of Applied Clinical Medical Physics, 18, 15-25.
https://doi.org/10.1002/acm2.12033

 
 
Top