JWARP  Vol.9 No.12 , November 2017
Forecasting the Rainfall Pattern on Upstream of Hirakud Reservoir Using L-Moment for Accessing the Inflow
Abstract: Changes in the rainfall pattern are a challenge for filling schedule of reservoir, when it is fulfilling various demands. In monsoon fed reservoirs, the target remains for attaining full reservoir capacity in order to meet various demands during non-monsoon period and the flood control. The planners always eye towards the inflow trend and perspective frequency of rainfall in order to counter the extreme events. In this study, the case of Hirakud reservoir of Mahanadi basin of India is considered as this reservoir meets various demands as well as controls devastating floods. The inflow trend has been detected by using Mann Kendall test. The frequency analysis of monthly rainfall is calculated using L-moment program for finalizing a regional distribution. The falling trend in inflow to reservoir is visualized in the month of July and August. The Wakeby distribution is found suitable for the monthly rainfall of July, September and October, where as in June and August, General Extreme Value (GEV), General Normal (GN) and Pearson Type-III (PT-III) distributions are found suitable. The regional growth factors for the 20, 40, 50 and 100-year return period rain-falls along with inflow to reservoir observed between 1958-2010 are calculated in this study as a referral for reservoir operation policy.
Cite this paper: Gupta, K. , Kar, A. , Jena, J. and Jena, D. (2017) Forecasting the Rainfall Pattern on Upstream of Hirakud Reservoir Using L-Moment for Accessing the Inflow. Journal of Water Resource and Protection, 9, 1335-1346. doi: 10.4236/jwarp.2017.912085.

[1]   Gao, Y.C., Yao, Z.J., Liu, B.Q. and Aifeng, L.V. (2002) Evolution Trend of Miyun Reservoir Inflow and Its Motivating Factors Analysis. Progress in Geography, 21, 546-553.

[2]   Dilini, W.M.N., Lyanage-Hansen, L., Attygalle, M.T.D. and Nandalal, K.D.W. (2013) Effective Water Management in the Mahaweli Reservoir System. Analyzing the Inflow of the Upmost Reservoir, International Symposium for Next Generation Infrastructure, Wollongong, October 1-4 2013.

[3]   Song, A., Chandramouli, V. and Gupta, N. (2012) Analysing Inflow Trend of Indiana Reservoirs Using SOM. Journal of Hydrologic Engineering, 17, 880-887.

[4]   Sethy, R., Pandey, B.K., Krishnan, R., Khare, D. and Nayak, P.C. (2015) Performance Evaluation and Hydrological Trend Detection of a Reservoir Under Climate Change Condition. Journal of Model Earth System Environment, 1, 2-10.

[5]   Dawson, D., Van Landegham, M.M., Asquith, W.H. and Patino, R. (2015) Long Term Trends on Reservoir Water Quality and Quantity in Two Major River Basins of Southern Great Plains. Journal of Lake and Reservoir Management, 31, 254-279.

[6]   Manee, D. Tachikawa, Y. and Yorozu, K. (2015) Analysis of Hydrologic Variables Changes Related to Large Scale Reservoir Operation by Using Mann-Kendall Statistical Tests in Thailand. THA 2015 International Conference on Climate Change and Water & Environmental Management in Monsoon Asia, 28-30 January 2015, Bangkok.

[7]   Halik, G., Anwar, N., Santosa, B. and Edijatno (2015) Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models. Journal of Advances in Civil Engineering, Article ID: 515376.

[8]   Topaloglu, F. (2002) Determine Suitable Probability Distribution Models for Flow and Precipitation Series of the Seyhan River Basin, Turkish. Journal of Agriculture and Forestry, 26, 189-194.

[9]   Balladassare, D., Castellarian, A. and Brath, A. (2006) Relationship between Statistics of Rainfall Extremes and Mean Annual Precipitation: An Application for Design-Storm Estimation in Northen Central Italy. Hydrologic & Earth System Sciences, 10, 589-601.

[10]   Eslamian, S.S. and Feizi, H. (2007) Maximum Monthly Rainfall Analysis Using L-Moments for an Arid Region in Isfahan Province, Iran. Journal of Applied Meteorology and Climatology, 46, 494-503.

[11]   Vivekanadan, N. (2015) Rainfall Frequency Analysis using L-Moments of Probability Distribution. International Journal of Engineering Issues, 2015, 65-72.

[12]   Burn, D.H. (1994) Hydrologic Effects of Climatic Change in West-Central Canada. Journal of Hydrology, 160, 53-70.

[13]   Douglas, E.M., Vogel, R.M. and Kroll, C.N. (2002) Impact of Streamflow Persistence on Hydrologic Design. Journal of Hydrologic Engineering, 7, 220-228.

[14]   Yue, S. and Hashino, M. (2003) Long Term Trends of Annual and Monthly Precipitation in Japan. Journal of the American Water Resources Association, 39, 587-596.

[15]   Burn, D.H., Cunderlik, J.M. and Pietroniro, A. (2004) Hydrological Trends and Variability in the Liard River Basin. Hydrological Sciences Journal, 49, 53-67.

[16]   Lindstrom, G. and Bergstrom, S. (2004) Runoff Trends in Sweden 1807-2002. Hydrological Sciences Journal, 49, 69-83.

[17]   Hipel, K. and McLeod, A. (2005) Time Series Modelling of Water Resources and Environmental Systems. 45.

[18]   Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge.

[19]   Rao, A.R. and Hamed, K.H. (2000) Flood Frequency Analysis. CRC Publications, New York.

[20]   Government of Odisha, Department of Water Resources (2014) Flood Report of Hirakud Reservoir.