Back
 AJPS  Vol.8 No.12 , November 2017
Concentrations of Silver Nitrate in the In Vitro Development and Conservation of Passiflora gibertii N. E. Brown
Abstract: The aim of this study was to evaluate the effects of silver nitrate in the in vitro development and conservation of passion fruit plants. Experiments were carried out at the Laboratory of Culture and Tissues, in the National Cassava and Fruits Research Center (EMBRAPA), using microcuttings of Passiflora gibertii N. E. Br., previously cultivated in vitro. The microcuttings were placed in MS media supplemented with silver nitrate at concentrations of 0, 1, 2, 4 and 8 mg·L-1, and, during 30, 60 and 90 days, the following variables were identified: Shooting length (cm), number of roots, number and coloration of leaves. A completely randomized design with 30 replications in a split-plot scheme was employed. Polynomial regression equations were adjusted in analysis of variance to compare averages of treatments. The obtained results support the assumption of high sensitivity of passion fruit tissues to ethylene, which reflects in the lost of vigor and in the induction of culture senescence by its accumulation. Based on obtained results, and in order to mitigate this problem, it is possible to indicate an addition of 2 mg·L-1 of silver nitrate in culture media, for the micropropagation of passion fruit plant, allowing the controlling of the atmosphere inside the culture test tubes, during the establishment of explants and other steps of the process.
Cite this paper: Faria, G. , Felizardo, L. , Ferreira, A. , Rocha, P. , Suzuki, A. , Souza, A. , Junghans, T. , Costa, M. , Peixoto, A. , Morais, A. , Lopes, B. and Oliveira, T. (2017) Concentrations of Silver Nitrate in the In Vitro Development and Conservation of Passiflora gibertii N. E. Brown. American Journal of Plant Sciences, 8, 2944-2955. doi: 10.4236/ajps.2017.812199.
References

[1]   Rosa, Y.B.C.J., Aizza, L.C.B., Bello, C.C.M. and Dornelas, M.C. (2014) PmTCP1 Encodes a Putative TCP Transcription Factor and Is Differentially Expressed during In Vitro Organogenesis in Passiflora. In Vitro Cellular & Developmental Biology - Plant, 50, 36-44.
https://doi.org/10.1007/s11627-013-9585-x

[2]   Reis, R.V., Oliveira, E.J., Viana, A.P., Pereira, T.N.S., Pereira, M.G. and Morais-Silva, M.G. (2011) Genetic Diversity in Recurrent Selection of Yellow Passion Fruit Detected by Microsatellites Markers. Pesquisa Agropecuária Brasileira, 46, 51-57.
https://doi.org/10.1590/S0100-204X2011000100007

[3]   Vieira, L.M., Rocha, D.I., Taquetti, M.F., Silva, L.C., Campos, J.M.S., Viccini, L.F. and Otoni, W.C. (2014) In Vitro Plant Regeneration of Passiflora setacea D.C. (Passifloraceae): The Influence of Explant Type, Growth Regulators, and Incubation Conditions. In Vitro Cellular & Developmental Biology - Plant, 50, 738-745.
https://doi.org/10.1007/s11627-014-9650-0

[4]   Santos, C.L., Viana, A.P., Freitas, M.S.M., Carvalho, A.J.C. and Rodrigues, D.L. (2017) Relationship between Yield and Fruit Quality of Passion Fruit C03 Progenies under Different Nutritional Levels. Revista Brasileira de Fruticultura, 39.
https://doi.org/10.1590/0100-29452017691

[5]   Meletti, L.M.M. (2011) Avanços na cultura do maracujá no Brasil. Revista Brasileira de Fruticultura, 33, 83-91.
https://doi.org/10.1590/S0100-29452011000500012

[6]   Junqueira, N.T.V., Braga, M.F., Faleiro, F.G., Peixoto, J.R. and Bernacci, L.C. (2005) Potencial de espécies silvestres de maracujazeiro como fonte de resistência a doenças. In: Faleiro, F.G., Junqueira, N.T.V. and Braga, M.F., Eds., Maracujá: Germoplasma e melhoramento genetic, Embrapa Cerrados, Planaltina DF, 81-106.

[7]   Isutsa, D.K. (2004) Rapid Micropropagation of Passion Fruit (Passiflora edulis Sims) Varieties. Scientia Horticulturae, 99, 395-400.

[8]   Trevisan, F. and Mendes, B.M.J. (2005) Optimization of Passionfruit (Passiflora edulis f. flavicarpa) in Vitro Organogenesis. Scientia Agricola, 62, 346-350.
https://doi.org/10.1590/S0103-90162005000400007

[9]   Trevisan, F. and Mendes, B.M.J. (2006) Resistance to Passion Fruit Woodiness Virus in Transgenic Passionflower Expressing the Virus Coat Protein Gene. Plant Diseases, 90, 1026-1030.
https://doi.org/10.1094/PD-90-1026

[10]   Figueiredo, M.A., Paiva, R., Souza, A.C., Porto, J.M.P., Nogueira, G.F. and Soares F.P. (2007) In Vitro Induction of Callus in Two Species of Native Passion Fruit Plants. Revista Brasileira de Biociência, 5, 288-290.

[11]   Dias, L.L.C., Santa-Catarina, C., Ribeiro, D.M., Barros, R.S., Floh, E.I.S. and Otoni, W.C. (2009) Ethylene and Polyamine Production Patterns during in Vitro Shoot Organogenesis of Two Passion Fruit Species as Affected by Polyamines and Their Inhibitor. Plant Cell, Tissue and Organ Culture, 99, 199-208.
https://doi.org/10.1007/s11240-009-9594-y

[12]   Dias, L.L.C., Ribeiro, D.M., Santa-Catarina, C., Barros, R.S., Floh, E.I.S. and Otoni, W.C. (2010) Ethylene and Polyamine Interactions in Morphogenesis of Passiflora cincinnata: Effects of Ethylene Biosynthesis and Action Modulators, as well as Ethylene Scavengers. Plant Growth Regulation, 62, 9-19.
https://doi.org/10.1007/s10725-010-9478-5

[13]   Santos, F.C., Ramos, J.D., Pasqual, M., Rezende, J., Santos, F.C. and Villa, F. (2010) Micropropagation of Passion Fruit Sleep. Revista Ceres, 57, 112-117.
https://doi.org/10.1590/S0034-737X2010000100018

[14]   Monteiro-Hara, A.C.B.A., Jadão, A.S., Mendes, B.M.J., Rezende, J.A.M., Trevisan, F., Mello, A.P.O.A., Vieira, M.L.C., Meletti, L.M.M. and Piedade, S.M.S. (2011) Genetic Transformation of Passionflower and Evaluation of R1 and R2 Generations for Resistance to Cowpea aphid Borne Mosaic Virus. Plant Disease, 95, 1021-1025.
https://doi.org/10.1094/PDIS-12-10-0873

[15]   Garcia, R., Pacheco, G., Falcão, E., Borges, G. and Mansur, E. (2011) Influence of Type of Explant, Plant Growth Regulators, Salt Composition of Basal Medium, and Light on Callogenesis and Regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell, Tissue and Organ Culture, 106, 47-54.
https://doi.org/10.1007/s11240-010-9892-4

[16]   Pacheco, G., Garcia, R., Lugato, D., Vianna, M. and Mansur, E. (2012) Plant Regeneration, Callus Induction and Establishment of Cell Suspension Cultures of Passiflora alata Curtis. Scientia Horticulturae, 144, 42-47.

[17]   Soares, W., Rêgo, M., Rêgo, E., Barroso, P., Nascimento, K. and Ferreira, K. (2012) In Vitro Establishment and Micropropagation of Passiflora foetida L. Revista Brasileira de Plantas Medicinais, 14, 138-142.
https://doi.org/10.1590/S1516-05722012000500002

[18]   Figueiredo-Carvalho, M.A., Paiva, R., Vargas, D.P., Porto, J.M.P., Herrera, R.C. and Stein, V.C. (2012) In Vitro Germination of Passiflora gibertii N. E. Brown with Mechanical Scarification and Gibberellic Acid. Semina: Ciências Agrárias, 33, 1027-1032.
https://doi.org/10.5433/1679-0359.2012v33n3p1027

[19]   Lugato, D., Simão, M.J., Garcia, R., Mansur, E. and Pacheco, G. (2014) Determination of Antioxidant Activity and Phenolic Content of Extracts from in Vivo Plants and in Vitro Materials of Passiflora alata Curtis. Plant Cell, Tissue and Organ Culture, 118, 339-346.
https://doi.org/10.1007/s11240-014-0486-4

[20]   Passos, I.R.S. and Bernarcci, L.C. (2005) Tissue Culture Applied to the Maintenance of in Vitro Germplasm and Breeding of Passion Fruit (Passiflora spp.). In: Faleiro, F.G., Junqueira, N.T.V. and Braga, M.F., Eds., Passionflower: Germplasm and Breeding, Planaltina DF, 361-384.

[21]   Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture. Physiologia Plantarum, 15, 437-497.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

[22]   Erig, A.C. and Schuch, M.W. (2005) In Vitro Establishment of Blueberry Trees Starting from Nodal Segments. Scientia Agrária, 6, 91-96.
https://doi.org/10.5380/rsa.v6i1.4603

[23]   Nepomuceno, C.F., Rios, A.P.D.S., Queiroz, S.R.O.D., Pelacani, C.R. and Santana, J.R.F.D. (2007) Control of Leaf Abscission and in Vitro Morphogenesis in Cultures of Anadenanthera colubrina (Vell.) Brenan var. Cebil Altschul. Revista árvore, 31, 967-975.
https://doi.org/10.1590/S0100-67622007000500021

[24]   Batista, D.S., Dias, L.L.C., Macedo, A.F., Rêgo, M.M., Rêgo, E.R., Floh, E.I.S. and Otoni, W.C. (2013) Suppression of Ethylene Levels Promotes Morphogenesis in Pepper (Capsicum annuum L.). In Vitro Cellular & Developmental Biology Plant, 49, 759-764.
https://doi.org/10.1007/s11627-013-9559-z

[25]   Mendes, A.F.S., Cidade, L.C., Otoni, W.C., Soares-Filho, W.S. and Costa, M.G.C. (2011) Role of Auxins, Polyamines and Ethylene in Root Formation and Growth in Sweet Orange. Biologia Plantarum, 55, 375-378.
https://doi.org/10.1007/s10535-011-0058-y

[26]   Gong, Y., Gao, F. and Tang, K. (2005) In Vitro High Frequency Direct Root and Shoot Regeneration in Sweet Potato using the Ethylene Inhibitor Silver Nitrate. South African Journal of Botany, 71, 110-113.

[27]   Trujillo-Moya, C. and Gisbert, C. (2012) The Influence of Ethylene and Ethylene Modulators on Shoot Organogenesis in Tomato. Plant Cell, Tissue and Organ Culture, 111, 41-48.
https://doi.org/10.1007/s11240-012-0168-z

[28]   Kokina, I., Gerbreders, V., Sledevskis, E. and Bulanovs, A. (2013) Penetration of Nanoparticles in Flax (Linum usitatissimum L.) Calli and Regenerants. Journal of Biotechnology, 165, 127-132.

[29]   Ferreira, D.F. (2011) Sisvar: A Computer Statistical Analysis System. Ciência e Agrotecnologia, 35, 1039-1042.
https://doi.org/10.1590/S1413-70542011000600001

[30]   Pimentel-Gomes, F. (2009) Course in Experimental Statistics. 15th Edition, FEALQ, Piracicaba SP, 451.

[31]   Barbosa, W.M., Otoni, W.C., Carnelossi, M., Silva, E., Azevedo, A.A. and Vieira, G. (2001) Rhizogenesis in Vitro Shoot Cultures of Passion Fruit (Passiflora edulisf. flavicarpa Deg.) Is Affect by Ethylene Precursor and by Inhibitors. International Journal of Horticultural Science, 7, 47-51.

[32]   Purnhauser, L., Medgyesy, P., Czako, M., Dix, P.J. and Marton, L. (1987) Stimulation of Shoot Regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. Tissue Cultures using the Ethylene Inhibitor AgNO3. Plant Cell Reports, 6, 1-4.
https://doi.org/10.1007/BF00269725

[33]   Reis, L.B., Paiva-Neto, V.B., Toledo-Picoli, E.A., Finger, L.F. and Otoni, W.C. (2003) Axillary Bud Development of Passion Fruit as Affected by Ethylene Precursor and Inhibitors. In Vitro Cellular & Developmental Biology Plant, 39, 618-622.
https://doi.org/10.1079/IVP2003455

[34]   Pinto, A.P.C., Monteiro-Hara, A.C.A., Stipp, L.C.L. and Mendes, B.M.J. (2010) In Vitro Organogenesis of Passiflora alata. In Vitro Cellular & Developmental Biology Plant, 46, 28-33.
https://doi.org/10.1007/s11627-009-9251-5

[35]   Mafla, G., Roa, J.C. and Guevara, C.L. (2000) Advances on the in Vitro Growth Control of Cassava, using Silver Nitrate. In: Carvalho, L.J.C.B., Thro, A.M. and Vilarinhos, A.D., Eds., International Scientific Meeting Cassava Biotechnology, 4, Salvador BA, Embrapa-Cenargen, Brasília DF, 439-446.

[36]   Ghaemi, M., Sarrafi, A. and Alibert, G. (1994) The Effects of Silver Nitrate, Colchicine, Cupric Sulfate and Genotype on the Production of Embryoids from Anthers of Tetraploid Wheat (Triticum turgidum). Plant Cell, Tissue and Organ Culture, 36, 355-359.
https://doi.org/10.1007/BF00046093

[37]   Zobayed, S.M.A., Armstrong, J. and Armstrong, W. (2001) Micropropagation of Potato: Evaluation of Closed, Diffusive and Forced Ventilation on Growth and Tuberization. Annals of Botany, 87, 53-59.
https://doi.org/10.1006/anbo.2000.1299

[38]   Kumar, V., Parvatam, G. and Ravishankar, G.A. (2009) AgNO3—A Potential Regulator of Ethylene Activity and Plant Growth Modulator. Electronic Journal of Biotechnology, 12.
https://doi.org/10.2225/vol12-issue2-fulltext-1

 
 
Top