Back
 JAMP  Vol.5 No.11 , November 2017
Simplest Method for Calculating the Lowest Achievable Uncertainty of Model at Measurements of Fundamental Physical Constants
Abstract: The CODATA procedure for calculating the recommended relative uncertainty of the measured fundamental physical constants is complex and is based on the use of powerful computers and modern mathematical statistical methods. In addition, the expert’s opinion caused by accumulated knowledge, life experience and intuition of researchers is applied at each stage of the calculations. In this article, the author continues to advocate a theoretically grounded information method as the most effective tool for testing and achieving the minimum possible relative uncertainty for any measurements of experimental physics and engineering. The introduced fundamental limit characterizing discrepancy between a model and the observed object cannot be overcome by any improvement of instruments, methods of measurement and the model’s computerization. Examples are given.
Cite this paper: Menin, B. (2017) Simplest Method for Calculating the Lowest Achievable Uncertainty of Model at Measurements of Fundamental Physical Constants. Journal of Applied Mathematics and Physics, 5, 2162-2171. doi: 10.4236/jamp.2017.511176.
References

[1]   Τауlоr, В.Ν., Langenberg, D.N. and Parker, W.H. (1970) The Fundamental Physical Constants. Scientific American, 223, 62-78.
https://goo.gl/jZ55TD

[2]   Karshenboim, S.G. (2013) Progress in the Accuracy of the Fundamental Physical Constants: 2010 CODATA Recommended Values. UFN, 183, 935-962.
http://www.mathnet.ru/links/fb8357c7049e641ede305b7d35c7578f/ufn4438.pdf

[3]   Mohr, P.J., Taylor, B.N. and Newell D.B. (2016) CODATA Recommended Values of the Fundamental Physical Constants: 2014. Reviews of Modern Physics, 88, 1-73.
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=920687

[4]   Menin, B. (2017) Universal Metric for the Assessing the Magnitude of the Uncertainty in the Measurement of Fundamental Physical Constants. Journal of Applied Mathematics and Physics, 5, 365-385.
http://file.scirp.org/pdf/JAMP_2017021711410991.pdf

[5]   NIST Special Publication 330 (SP330), the International System of Units (SI), 2008, 1-97.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication330e2008.pdf

[6]   Sonin, A.A. (2001) The Physical Basis of Dimensional Analysis. 2nd Edition, Department of Mechanical Engineering, MIT, Cambridge, 1-57.
http://web.mit.edu/2.25/www/pdf/DA_unified.pdf

[7]   Brillouin, L. (1964) Scientific Uncertainty and Information. Academic Press, New York, 1-155.
https://goo.gl/JbPFvF

[8]   Burgin, M. (2009) Theory of Information—Fundamentality, Diversity and Unification. World Scientific Publishing Co., USA 2009, ch. 3, 255-300.

[9]   Van Dyck, R.S., Farnham, Jr. D.L., Zafonte, S.L. and Schwinberg, P.B. (1999) High precision Penning Trap Mass Spectroscopy and a New Measurement of the Proton’s “Atomic Mass”. In: Dubin D.E. and Schneider, D., Eds., Trapped Charged Particles and Fundamental Physics, AIP Conference Proceedings 457 AIP, Woodbury, NY, 101, 2-11.
https://goo.gl/VFxkVu

[10]   CODATA Recommended Values of the Fundamental Physical Constants: 2002, 1-107. https://goo.gl/ZJsZQL

[11]   Mohr, P.J., Taylor, B.N. and Newell, D.B. (2008) CODATA Recommended Values of the Fundamental Physical Constants: 2006. Reviews of Modern Physics, 80, 1-98.
https://goo.gl/h5Sc1P

[12]   Solders, A., Bergström, I., Nagy, Sz., Suhonen, M. and Schuch, R. (2008) Determination of the Proton Mass from a Measurement of the Cyclotron Frequencies of D+ and H2+ in a Penning Trap. Physical Review Letters A, 78, Article ID: 012514.
https://goo.gl/5CXswV

[13]   Mohr, P.J., Taylor, B.N. and Newell, D.B. (2012) CODATA Recommended Values of the Fundamental Physical Constants: 2010. Journal of Physical and Chemical Reference Data, 41, Article ID: 043109.
https://goo.gl/tqwqoy

[14]   CODATA Recommended Values of the Fundamental Physical Constants: 2014.
https://codata.org/blog/?p=451

[15]   Heiße, F., Köhler-Langes, F., Rau, S., Hou, J., Junck, S., Kracke, A., Mooser, A., Quint, W., Ulmer, S., Werth, G., Blaum, K. and Sturm, S. (2017) High-Precision Measurement of the Proton’s Atomic Mass. Physical Review Letters, 119, Article ID: 033001.
https://goo.gl/iRozRW

[16]   De Bievre, P., Valkiers, S., Kessel, R., Taylor, P.D.P., Becker, P., Bettin, H., Peuto, A., Pettorruso, S., Fujii, K., Waseda, A., Tanaka, M., Deslattes, R.D., Peiser, H.S. and Kenny, M.J. (2001) A Reassessment of the Molar Volume of Silicon and of the Avogadro Constant. IEEE Transactions on Instrumentation and Measurement, 50, 593-597.
https://goo.gl/hCJkce

[17]   Becker, P., Bettin, H., Danzebrink, H.-U., Gläser, M., Kuetgens, U., Nicolaus, A., Schiel, D., De Bièvre, P., Valkiers, S. and Taylor, P. (2003) Determination of the Avogadro Constant via the Silicon Route. Metrologia, 40, 271-287.
https://goo.gl/vp88c5

[18]   (2011) International Avogadro Project. Physical Review Letters, 106, Article ID: 030801.
https://goo.gl/33E6Z3

[19]   Andreas, B., Azuma, Y., Bartl, G., Becker, P., Bettin, H., Borys, M., Busch, I., Gray, M., Fuchs, P., Fujii, K., Fujimoto, H., Kessler, E., Krumrey, M., Kuetgens, U., Kuramoto, N., Mana, G., Manson, P., Massa, E. and Mizushima, S. (2011) Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal. Physical Review Letters, 106, Article ID: 030801.
https://goo.gl/4g7nkr

[20]   Azuma, Y., et al. (2015) Improved Measurement Results for the Avogadro Constant using a 28Si-Enriched Crystal. Metrologia, 52, 360-375. https://goo.gl/PURKaG

 
 
Top