Back
 IJMPCERO  Vol.6 No.4 , November 2017
X-Ray Induced Mutation Frequency at the Hypoxanthine Phosphoribosyltransferase Locus in Clinically Relevant Radioresistant Cells
Abstract: To elucidate the molecular mechanisms underlying cellular radioresistance, clinically relevant radioresistant cell lines were established via long-term exposure to X-rays with stepwise dose escalation. Established cells continue to proliferate despite exposure to 2 Gy X-rays/day for more than 30 days, a standard protocol in cancer radiotherapy. DNA repair fidelity in radioresistant and the parental cells by evaluating the mutation frequency at the hypoxanthine phosphoribosyltransferase (HPRT) locus after exposure to X-rays was determined. Mutation spectrum at the HPRT locus was examined by multiplex polymerase chain reaction. Rejoining kinetics of X-ray-induced DNA double strand breaks (dsbs) was evaluated by the detection of phosphorylated histone H2AX (γH2AX) after X-irradiation. The fold increase in the HPRT mutation frequency due to acute radiation was similar between radioresistant and the parental cell lines. However, fractionated radiation (FR) consisting of 2 Gy X-rays/day increased the mutation frequency at the HPRT locus in parental but not in radioresistant cells. Analysis of the FR-induced mutations at the HPRT locus revealed a high frequency of deletion mutations (>70%) in parental but not in radioresistant cells. As assessed by γH2AX immunostaining, DNA dsbs induced by acute exposure to 10 Gy of X-rays were repaired to the control level within 7 days in radioresistant but not in the parental cells. Moreover, 2 Gy × 5 FR increased the number of γH2AX-positive cells in parental cultures but not in radioresistant cultures. DNA dsbs induced by 2 Gy/day FR are repaired with fidelity in radioresistant but not in parental cells.
Cite this paper: Kuwahara, Y. , Roudkenar, M. , Urushihara, Y. , Saito, Y. , Tomita, K. , Roushandeh, A. , Sato, T. , Kurimasa, A. and Fukumoto, M. (2017) X-Ray Induced Mutation Frequency at the Hypoxanthine Phosphoribosyltransferase Locus in Clinically Relevant Radioresistant Cells. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 6, 377-391. doi: 10.4236/ijmpcero.2017.64034.
References

[1]   Kuwahara, Y., Li, L., Baba, T., Nakagawa, H., Shimura, T., Yamamoto, Y., Ohkubo, Y. and Fukumoto, M. (2009) Clinically Relevant Radioresistant Cells Efficiently Repair DNA Double-Strand Breaks Induced by X-Rays. Cancer Science, 100, 747-752.
https://doi.org/10.1111/j.1349-7006.2009.01082.x

[2]   Qing, Y., Yang, X.Q., Zhong, Z.Y., Lei, X., Xie, J.Y., Li, M.X., Xiang, D.B., Li, Z.P., Yang, Z.Z., Wang, G. and Wang, D. (2010) Microarray Analysis of DNA Damage Repair Gene Expression Profiles in Cervical Cancer Cells Radioresistant to 252Cf Neutron and X-Rays. BMC Cancer, 10, 71.
https://doi.org/10.1186/1471-2407-10-71

[3]   Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D. and Rich, J.N. (2006) Glioma Stem Cells Promote Radioresistance by Preferential Activation of the DNA Damage Response. Nature, 444, 756-760.
https://doi.org/10.1038/nature05236

[4]   Lynam-Lennon, N., Reynolds, J.V., Pidgeon, G.P., Lysaght, J., Marignol, L. and Maher, S.G. (2010) Alterations in DNA Repair Efficiency Are Involved in the Radioresistance of Esophageal Adenocarcinoma. Radiation Research, 174, 703-711.
https://doi.org/10.1667/RR2295.1

[5]   Shimura, T., Kakuda, S., Ochiai, Y., Nakagawa, H., Kuwahara, Y., Takai, Y., Kobayashi, J., Komatsu, K. and Fukumoto, M. (2010) Acquired Radioresistance of Human Tumor Cells by DNA-PK/AKT/GSK3Beta-Mediated Cyclin D1 Overexpression. Oncogene, 29, 4826-4837.
https://doi.org/10.1038/onc.2010.238

[6]   Shimura, T., Ochiai, Y., Noma, N., Oikawa, T., Sano, Y. and Fukumoto, M. (2013) Cyclin D1 Overexpression Perturbs DNA Replication and Induces Replication-Associated DNA Double-Strand Breaks in Acquired Radioresistant Cells. Cell Cycle, 12, 773-782.
https://doi.org/10.4161/cc.23719

[7]   de Llobet, LI., Baro, M., Figueras, A., Modolell, I., Da Silva, M.V., Muñoz, P., Navarro, A., Mesia, R. and Balart, J. (2013) Development and Characterization of an Isogenic Cell Line with a Radioresistant Phenotype. Clinical and Translational Oncology, 15, 189-197.

[8]   Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., Joshua, B., Kaplan, M.J., Wapnir, I., Dirbas, F.M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S.K., Quake, S.R., Brown, J.M., Weissman, I.L. and Clarke, M.F. (2009) Association of Reactive Oxygen Species Levels and Radioresistance in Cancer Stem Cells. Nature, 458, 780-783.
https://doi.org/10.1038/nature07733

[9]   Gupta, S.C., Hevia, D., Patchva, S., Park, B., Koh, W. and Aggarwal, B.B. (2012) Upsides and Downsides of Reactive Oxygen Species for Cancer: the Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy. Antioxidants & Redox Signaling, 16, 1295-1322.
https://doi.org/10.1089/ars.2011.4414

[10]   McDermott, N., Meunier, A., Lynch, T.H., Hollywood, D. and Marignol, L. (2014) Isogenic Radiation Resistant Cell Lines: Development and Validation Strategies. International Journal of Radiation Biology, 90, 115-126.
https://doi.org/10.3109/09553002.2014.873557

[11]   Chang, L., Graham, P.H., Hao, J., Ni, J., Bucci, J., Cozzi, P.J., Kearsley, J.H. and Li, Y. (2014) PI3K/Akt/mTOR Pathway Inhibitors Enhance Radiosensitivity in Radioresistant Prostate Cancer Cells through Inducing Apoptosis, Reducing Autophagy, Suppressing NHEJ and HR Repair Pathways. Cell Death and Disease, 5, e1437.
https://doi.org/10.1038/cddis.2014.415

[12]   Kuwahara, Y., Oikawa, T., Ochiai, Y., Roudkenar, M.H., Fukumoto, M., Shimura, T., Ohtake, Y., Ohkubo, Y., Mori, S., Uchiyama, Y. and Fukumoto, M. (2011) Enhancement of Autophagy Is a Potential Modality for Tumors Refractory to Radiotherapy. Cell Death and Disease, 2, e177.
https://doi.org/10.1038/cddis.2011.56

[13]   Kim, K.W., Moretti, L., Mitchell, L.R., Jung, D.K. and Lu, B. (2009) Combined Bcl-2/Mammalian Target of Rapamycin Inhibition Leads to Enhanced Radiosensitization via Induction of Apoptosis and Autophagy in Non-Small Cell Lung Tumor Xenograft Model. Clinical Cancer Research, 15, 6096-6105.
https://doi.org/10.1038/cddis.2011.56

[14]   Lynam-Lennon, N., Maher, S.G., Maguire, A., Phelan, J., Muldoon, C., Reynolds, J.V. and O'Sullivan, J. (2014) Altered Mitochondrial Function and Energy Metabolism Is Associated with a Radioresistant Phenotype in Oesophageal Adenocarcinoma. PLoS One, 9, e100738.
https://doi.org/10.1371/journal.pone.0100738

[15]   Kim, J.J. and Tannock, I.F. (2005) Repopulation of Cancer Cells during Therapy: An Important Cause of Treatment Failure. Nature Review Cancer, 5, 516-525.
https://doi.org/10.1038/nrc1650

[16]   Kelland, L.R., Edwards, S.M. and Steel, G.G. (1988) Induction and Rejoining of DNA Double-Strand Breaks in Human Cervix Carcinoma Cell Lines of Differing Radiosensitivity. Radiation Research, 116, 526-538.
https://doi.org/10.2307/3577394

[17]   Wlodek, D. and Hittelman, W.N. (1987) The Repair of Double-Strand DNA Breaks Correlates with Radiosensitivity of L5178Y-S and L5178Y-R Cells. Radiation Research, 112, 146-155.
https://doi.org/10.2307/3577085

[18]   Li, Y., Li, H., Peng, W., He, X.Y., Huang, M., Qiu, D., Xue, Y.B. and Lu, L. (2015) DNA-Dependent Protein Kinase Catalytic Subunit Inhibitor Reverses Acquired Radioresistance in Lung Adenocarcinoma by Suppressing DNA Repair. Molecular Medicine Reports, 12, 1328-1334.
https://doi.org/10.3892/mmr.2015.3505

[19]   Young, A., Berry, R., Holloway, A.F., Blackburn, N.B., Dickinson, J.L., Skala, M., Phillips, J.L. and Brettingham-Moore, K.H. (2014) RNA-Seq Profiling of a Radiation Resistant and Radiation Sensitive Prostate Cancer Cell Line Highlights Opposing Regulation of DNA Repair and Targets for Radiosensitization. BMC Cancer, 14, 808.
https://doi.org/10.1186/1471-2407-14-808

[20]   Aypar, U., Morgan, W.F. and Baulch, J.E. (2011) Radiation-Induced Genomic Instability: Are Epigenetic Mechanisms the Missing Link? International Journal of Radiation Biology, 87, 179-191.
https://doi.org/10.3109/09553002.2010.522686

[21]   Streffer, C. (2010) Strong Association between Cancer and Genomic Instability. Radiation and Environmental Biophysics, 49, 125-131.
https://doi.org/10.1007/s00411-009-0258-4

[22]   Morgan, W.F. and Murnane, J.P. (1995) A Role for Genomic Instability in Cellular Radioresistance? Cancer Metastasis Review, 14, 49-58.
https://doi.org/10.1007/BF00690211

[23]   Stout, J.T. and Caskey, C.T. (1985) HPRT: Gene Structure, Expression, and Mutation. Annual Review of Genetics, 19, 127-148.
https://doi.org/10.1146/annurev.ge.19.120185.001015

[24]   Kuwahara, Y., Mori, M., Oikawa, T., Shimura, T., Ohtake, Y., Mori, S., Ohkubo, Y. and Fukumoto, M. (2010) The Modified High-Density Survival Assay Is the Useful Tool to Predict the Effectiveness of Fractionated Radiation Exposure. Journal of Radiation Research, 51, 297-302.
https://doi.org/10.1269/jrr.09094

[25]   Kubota, N., Okada, S., Nagatomo, S., Ozawa, F., Inada, T., Hill, C.K., Endo, S. and Komatsu, K. (1999) Mutation Induction and RBE of Low Energy Neutrons in V79 Cells. Journal of Radiation Research, 40, 21-27.
https://doi.org/10.1269/jrr.40.S21

[26]   Kagawa, Y., Shimazu, T., Gordon, A.J., Fukunishi, N., Inabe, N., Suzuki, M., Hirano, M., Kato, T., Watanabe, M., Hanaoka, F. and Yatagai, F. (1999) Complex Hprt Deletion Events Are Recovered after Exposure of Human Lymphoblastoid Cells to High-LET Carbon and Neon Ion Beams. Mutagenesis, 14, 199-205.
https://doi.org/10.1269/jrr.40.S21

[27]   Guerriero, E., Sorice, A., Capone, F., Napolitano, V., Colonna, G., Storti, G., Castello, G. and Costantini, S. (2014) Vitamin C Effect on Mitoxantrone-Induced Cytotoxicity in Human Breast Cancer Cell Lines. PLoS One, 9, e115287.
https://doi.org/10.1371/journal.pone.0115287

[28]   Taneja, N., Davis, M., Choy, J.S., Beckett, M.A., Singh, R., Kron, S.J. and Weichselbaum, R.R. (2004) Histone H2AX Phosphorylation as a Predictor of Radiosensitivity and Target for Radiotherapy. Journal of Biological Chemistry, 279, 2273-2280.
https://doi.org/10.1074/jbc.M310030200

[29]   El-Awady, R.A., Mahmoud, M., Saleh, E.M., El-Baky, H.A., Lotayef, M., Dahm-Daphi, J. and Dikomey, E. (2005) No Correlation between Radiosensitivity or Double-Strand Break Repair Capacity of Normal Fibroblasts and Acute Normal Tissue Reaction after Radiotherapy of Breast Cancer Patients. International Journal of Radiation Biology, 81, 501-508.
https://doi.org/10.1080/09553000500280500

[30]   El-Awady, R.A., Dikomey, E. and Dahm-Daphi, J. (2003) Radiosensitivity of Human Tumour Cells Is Correlated with the Induction But Not with the Repair of DNA Double-Strand Breaks. British Journal of Cancer, 89, 593-601.
https://doi.org/10.1038/sj.bjc.6601133

[31]   Olive, P.L., Banath, J.P. and MacPhail, H.S. (1994) Lack of a Correlation between Radiosensitivity and DNA Double-Strand Break Induction or Rejoining in Six Human Tumor Cell Lines. Cancer Research, 54, 3939-3946.

[32]   Mahrhofer, H., Burger, S., Oppitz, U., Flentje, M. and Djuzenova, C.S. (2006) Radiation Induced DNA Damage and Damage Repair in Human Tumor and Fibroblast Cell Lines Assessed by Histone H2AX Phosphorylation. International Journal of Radiation Oncology·Biology·Physics, 64, 573-580.
https://doi.org/10.1016/j.ijrobp.2005.09.037

[33]   Little, J.B., Nagasawa, H., Pfenning, T. and Vetrovs, H. (1997) Radiation-Induced Genomic Instability: Delayed Mutagenic and Cytogenetic Effects of X Rays and Alpha Particles. Radiation Research, 148, 299-307.
https://doi.org/10.2307/3579514

[34]   Limoli, C.L., Corcoran, J.J., Jordan, R., Morgan, W.F. and Schwartz, J.L. (2001) A Role for Chromosomal Instability in the Development and Selection for Radioresistant Cell Variants. British Journal of Cancer, 84, 489-492.
https://doi.org/10.1054/bjoc.2000.1604

[35]   Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., Werb, Z. and Bissell, M.J. (2005) Rac1b and Reactive Oxygen Species Mediate MMP-3-Induced EMT and Genomic Instability. Nature, 436, 123-127.
https://doi.org/10.1038/nature03688

[36]   Sallmyr, A., Fan, J. and Rassool, F.V. (2008) Genomic Instability in Myeloid Malignancies: Increased Reactive Oxygen Species (ROS), DNA Double Strand Breaks (DSBs) and Error-Prone Repair. Cancer Letter, 270, 1-9.
https://doi.org/10.1016/j.canlet.2008.03.036

[37]   Kim, G.J., Chandrasekaran, K. and Morgan, W.F. (2006) Mitochondrial Dysfunction, Persistently Elevated Levels of Reactive Oxygen Species and Radiation-Induced Genomic Instability: A Review. Mutagenesis, 21, 361-367.
https://doi.org/10.1093/mutage/gel048

[38]   Leonhardt, E.A., Trinh, M., Chu, K. and Dewey, W.C. (1999) Evidence That Most Radiation-Induced HPRT Mutants Are Generated Directly by the Initial Radiation Exposure. Mutation Research, 426, 23-30.
https://doi.org/10.1016/S0027-5107(99)00080-9

[39]   Goldstein, M. and Kastan, M.B. (2015) The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy. Annual Review of Medicine, 66, 129-143.
https://doi.org/10.1146/annurev-med-081313-121208

[40]   Ward, A., Khanna, K.K. and Wiegmans, A.P. (2015) Targeting Homologous Recombination, New Pre-Clinical and Clinical Therapeutic Combinations Inhibiting RAD51. Cancer Treatment Reviews, 41, 35-45.
https://doi.org/10.1016/j.ctrv.2014.10.006

[41]   Seluanov, A., Mao, Z. and Gorbunova, V. (2010) Analysis of DNA Double-Strand Break (DSB) Repair in Mammalian Cells. Journal of Visualized Experiments, 43.
https://doi.org/10.3791/2002

 
 
Top