[1] I. L. Cameron, N. K. Smith, T. B. Pool, and R. L. Sparks, (1980) Intracellular concentration of sodium and other ele-ments as related to mutagenesis and oncogenesis in vivo, Can-cer Res., 40(5), 1493–500.
[2] A. Amidsen and M. Schou, (1968) Lithium and the transfer rate of sodium across the blood-brain barrier, Psychopharma-cologia, 12(3), 236–238.
[3] B. J. Carroll, L. Steven, R. A. Pope, and B. Davies, (1969) Sodium transfer from plasma to CSF in severe depressive ill-ness, Arch. Gen. Psychiatry, 21(1), 77–81.
[4] M. E. Moseley, W. M. Chew, M. C. Nishimura, T. L. Richards, J. Murphy-Boesch, G. B. Young, T. M. Marschner, L. H. Pitts, and T. L. James, (1985) In vivo sodium-23 magnetic resonance surface coil imaging: Observing experimental cerebral ische-mia in the rat, Magn. Reson. Imaging, 3(4), 383–387.
[5] W. H. Perman, P. A. Turski, L. W., Houston, G. H. Glover, and C. E. Hayes, (1986) Methodology of in vivo human sodium MR imaging at 1.5 T, Radiology, 160(3), 811–820.
[6] S. S. Winkler, D. M. Thomasson, K. Sherwood, and W. H. Perman, (1989) Regional T2 and sodium concentration esti-mates in the normal human brain by sodium-23 MR imaging at 1.5 T, J. Comput. Assist. Tomogr., 13(4), 561– 566.
[7] J. M. Dizon, J. S. Tauskela, D. Wise, D. Burkhoff, P. J. Cannon, and J. Katz, (1996) Evaluation of triplequantum-filtered 23Na NMR in monitoring of Intracellular Na content in the perfused rat heart: comparison of intra- and extracellular transverse relaxation and spectral amplitudes, Magn. Reson. Med., 35(3), 336–345.
[8] K. J. Jung and J. Katz, (1996) Chemical-shift-selective acquisi-tion of multiple-quantum-filtered 23Na signal, J. Magn. Reson. B., 112(3), 214–227.
[9] P. G. Morris, (1986) Nuclear magnetic resonance imaging in medicine and biology, Clarendon Press, Oxford, England, 123.
[10] S. W. Lee, S. K. Hilal, and Z. H. Cho, (1986) A multinuclear magnetic resonance imaging technique-simultane- ous proton and sodium imaging, Magn. Reson. Imaging, 4(4), 343–350.
[11] P. J. Cannon, A. A. Maudsley, S. K. Hilal, H. E. Simon, and F. Cassidy, (1986) Sodium nuclear magnetic resonance imaging of myocardial tissue of dogs after coronary artery occlusion and reperfusion, J. Am. Coll. Cardiol., 7(3), 573–579.
[12] C. T. Moonen, S. E. Anderson, and S. Unger, (1987) 23Na rotating frame imaging in the perfused rabbit heart using sepa-rate transmitter and receiver coils, Magn. Reson. Med., 5(3), 296–301.
[13] R. Ouwerkerk, K. B. Bleich, J. S. Gillen, M. G. Pomper, and P. A. Bottomley, (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology, 227(2), 529–3.
[14] F. E. Boada, G. X. Shen, S. Y. Chang, and K. R. Thulborn, (1997) Spectrally weighted twisted projection imaging: reduc-ing T2 signal attenuation effects in fast three-dimensional so-dium imaging, Magn. Reson. Med., 38(6), 1022–1028.
[15] I. Hancu, F. E. Boada, and G. X. Shen, (1999) Three- dimen-sional triple-quantum-filtered (23)Na imaging of in vivo hu-man brain, Magn. Reson. Med., 42(6), 1146– 1154.
[16] A. Borthakur, I. Hancu, F. E. Boada, G. X. Shen, E. M. Shapiro, and R. Reddy, (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage, J. Magn. Reson., 141(2), 286–290.
[17] K. J. Jung, P. J. Cannon, and J. Katz, (1997) Simultaneous acquisition of quadrupolar order and doublequantum 23Na signals, J. Magn. Reson., 129(2), 130–133.
[18] L. M. Boxt, D. Hsu, J. Katz, P. Detweiler, S. McLaughlin, T. J. Kolb, and H. M. Spotnitz, (1993) Estimation of myocardial water content using transverse relaxation time from dual spin-echo magnetic resonance imaging, Magn. Reson. Imaging, 11(3), 375–383.
[19] G. X. Shen, J. F. Wu, F. E. Boada, and K. R. Thulborn, (1999) Experimentally verified, theoretical design of dual-tuned, low-pass birdcage radiofrequency resonators for magnetic resonance imaging and magnetic resonance spectroscopy of human brain at 3.0 Tesla, Magn. Reson. Med., 41(2), 68–275.
[20] K. J. Jung, J. Katz, L. M. Box, S. K. Hilal, and Z. H. Cho, (1995) Breakthrough of single-quantum coherence and its elimination in double-quantum filtering, J. Magn. Reson. B., 107(3), 235–241.
[21] K. J. Jung, J. S. Tauskela, and J. Katz, (1996) New dou-ble-quantum filtering schemes, J. Magn. Reson. B., 112(2), 103–110.
[22] K. J. Jung and J. Katz, (1997) Mathematical analysis of gen-eration and elimination of intersequence stimulated echo in double-quantum filtering, J. Magn. Reson., 124 (1), 232–236.
[23] J. S. Tauskela, J. M. Dizon, J. Whang, and J. Katz, (1997) Evaluation of multiple-quantum-filtered 23Na NMR in moni-toring intracellular Na content in the isolated perfused rat heart in the absence of a hemical-shift reagent, J. Magn. Reson., 127(1), 115–127.
[24] V. A. Stenger, S. Peltier, F. E. Boada, and D. C. Noll, (1999) 3D spiral cardiac/respiratory ordered fMRI data acquisition at 3 Tesla, Magn. Reson. Med., 41(5), 983– 991.
[25] H. Serrai, A. Borthakur, L. Senhadji, and R. Reddy, (2000) Bansal, N. Time-domain quantification of multi-ple-quantum-filtered (23)Na signal using continuous wavelet transform analysis, J. Magn. Reson. 142(2), 341–347.
[26] J. B. Ra, S. K. Hilal, C. H. Oh, and I. K. Mun, (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med., 7(1), 11–22.
[27] S. K. Hilal, A. A. Maudsley, J. B. Ra, H. E. Simon, P. Roschmann, S. Wittekoek, Z. H. Cho, and S. K. Mun, (1985) In vivo NMR imaging of sodium-23 in the human head, J Comput Assist Tomogr, 9 (1), 1–7.
[28] T. Hashimoto, H. Ikehira, H. Fukuda, A. Yamaura, O. Wata-nabe, Y. Tateno, R. Tanaka, and H. E. Simon, (1991) In vivo sodium-23 MRI in brain tumors: Evaluation of preliminary clinical experience, Am J Physiol Imaging, 6(2), 74–80.
[29] K. L. Allen, A. L. Busza, S. R. Williams, and S. C. Williams (1994) Early changes in cerebral sodium distribution following ischaemia monitored by 23Na magnetic resonance imaging, Magn Reson Imaging, 12(6), 895– 900.
[30] R. Sharma and R. P. Kline, (2004) Chemosensitivity assay in mice prostate tumor: Preliminary report of flow cytometry, DNA fragmentation, ion ratiometric methods of anti-neoplastic drug monitoring. Cancer Cell International Cancer Cell Inter-national, 4(3).
[31] R. P. Kline, E. X. Wu, D. P. Petrylak, M. Szabolcs, P. O. Al-derson, M. L. Weisfeldt, P. Cannon, and J. Katz, (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging, Clin Cancer Res., 6(6), 2146–56.
[32] P. M. Winter, V. Seshan, J. D. Makos, A. D. Sherry, C. R. Malloy, and N. Bansal, (1998) Quantitation of intracellular [Na+] in vivo by using TmDOTP5-as an NMR shift reagent and extracellular marker, J Appl Physiol. 85(5), 1806–12.
[33] P. M. Winter, H. Poptani, and N. Bansal, (2001) Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on sin-gle-quantum- and triple-quantum-filtered 23Na and 31P nu-clear magnetic resonance of the subcutaneously implanted 9L glioma, Cancer Res., 61(5).
[34] J. M. Colet, N. Bansal, C. R. Malloy, and A. D. Sherry, (1999) Multiple quantum filtered 23Na NMR spectroscopy of the isolated, perfused rat liver, Magn Reson Med. 41(6), 1127–35.
[35] R. Sharma, R. P. Kline, E. X. Wu, and J. K. Katz, (2005) Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats, Cancer Cell International, 5, 26.
[36] R. Sharma, (2008) Extended expression for transverse mag-netization using four pulse sequence to construct double quan-tum filter of arbitrary phases for spin 3/2 sodium nuclei, Inter-national J. Computer Research, 16(4), 371–388.
[37] R. Ouwerkerk, M. A. Jacobs, K. J. Macura, A. C. Wolff, V. Stearns, and S. D. Mezban, N. F. Khouri, D. A. Bluemke, and P. A. Bottomley, (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI, Breast Cancer Research and Treatment, 106(2), 151–60.