[1] Havskum, H., Schlüter, L., Scharek, R., Berdalet, E. and Jacquet, S. (2004) Routine Quantification of Phytoplankton Groups—Microscopy or Pigment Analyses? Marine Ecology Progress Series, 273, 31-42. https://doi.org/10.3354/meps273031
[2] Katsiapi, M., Moustaka-Gouni, M., Michaloudi, E. and Kormas, K.A. (2011) Phytoplankton and Water Quality in a Mediterranean Drinking-Water Reservoir (Marathonas Reservoir, Greece). Environmental Monitoring and Assessment, 181, 563-575.
https://doi.org/10.1007/s10661-010-1851-3
[3] Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., Kong, W., Hao, J. and Shang, L. (2009) Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environmental Science & Technology, 43, 3522-3528. https://doi.org/10.1021/es8031852
[4] Falconer, I.R. (2012) Algal Toxins in Seafood and Drinking Water. Elsevier.
[5] Codd, G., Lindsay, J., Young, F., Morrison, L. and Metcalf, J. (2005) Harmful Cyanobacteria. Harmful Cyanobacteria, 1-23.
[6] Francy, D.S., Graham, J.L., Stelzer, E.A., Ecker, C.D., Brady, A.M.G., Struffolino, P. and Loftin, K.A. (2015) Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14. US Geological Survey, 2328-0328.
[7] Kasich, J., Butler, C., Zehringer, J. and Himes, L. (2012) State of Ohio Harmful Algal Bloom Response Strategy for Recreational Waters. Department of Health, Environmental Protection Agency and Department of Natural Resources.
[8] Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S. and Schubauer-Berigan J.P. (2014) Denitrification Alternates between a Source and Sink of Nitrous Oxide in the Hypolimnion of a Thermally Stratified Reservoir. Limnology and Oceanography, 59, 495-506.
https://doi.org/10.4319/lo.2014.59.2.0495
[9] Chang, N.-B., Vannah, B.W., Yang, Y.J. and Elovitz, M. (2014) Integrated Data Fusion and Mining Techniques for Monitoring Total Organic Carbon Concentrations in a Lake. International Journal of Remote Sensing, 35, 1064-1093. https://doi.org/10.1080/01431161.2013.875632
[10] Funk, J.M., Reutter, D.C. and Rowe, G.L. (2003) Pesticides and Pesticide Degradates in the East Fork Little Miami River and William H. Harsha Lake, Southwestern Ohio, 1999-2000. US Department of the Interior, US Geological Survey.
[11] Wissel, B., Gaçe, A. and Fry, B. (2005) Tracing River Influences on Phytoplankton Dynamics in Two Louisiana Estuaries. Ecology, 86, 2751-2762. https://doi.org/10.1890/04-1714
[12] Francy, D.S., Graham, J.L., Stelzer, E.A., Ecker, C.D., Brady, A.M.G., Pam, S. and Loftin, K.A. (2015) Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14. 2015-5120. Report, Reston.
[13] Willen, E. (2000) Phytoplankton in Water Quality Assessment—An Indicator Concept. Hydrological and Limnological Aspects of Lake Monitoring 57:80.
https://doi.org/10.1002/9780470511121.ch6
[14] Beaulieu, M., Pick, F. and Gregory-Eaves, I. (2013) Nutrients and Water Temperature Are Significant Predictors of Cyanobacterial Biomass in a 1147 Lakes Data Set. Limnology and Oceanography, 58, 1736-1746. https://doi.org/10.4319/lo.2013.58.5.1736
[15] Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A. and Elovitz, M.S. (2014) High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed. Environmental Science & Technology, 48, 11100-11108.
https://doi.org/10.1021/es501871g
[16] Thorp, J.H. and Covich, A.P. (2009) Ecology and Classification of North American Freshwater Invertebrates. Academic Press.
[17] Sun, J. and Liu, D. (2003) Geometric Models for Calculating Cell Biovolume and Surface Area for Phytoplankton. Journal of Plankton Research, 25, 1331-1346.
https://doi.org/10.1093/plankt/fbg096
[18] Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
https://doi.org/10.1093/molbev/mst197
[19] Jiang, Y., Xiao, P., Yu, G., Shao, J., Liu, D., Azevedo, S.M. and Li, R. (2014) Sporadic Distribution and Distinctive Variations of Cylindrospermopsin Genes in Cyanobacterial Strains and Environmental Samples from Chinese Freshwater Bodies. Applied and Environmental Microbiology, 80, 5219-5230. https://doi.org/10.1128/AEM.00551-14
[20] Davis, T.W., Watson, S.B., Rozmarynowycz, M.J., Ciborowski, J.J., McKay, R.M. and Bullerjahn, G.S. (2014) Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity. PLoS ONE, 9, e106093.
https://doi.org/10.1371/journal.pone.0106093
[21] Chen, Y., Qin, B., Teubner, K. and Dokulil, M.T. (2003) Long-Term Dynamics of Phytoplankton Assemblages: Microcystis-Domination in Lake Taihu, a Large Shallow Lake in China. Journal of Plankton Research, 25, 445-453. https://doi.org/10.1093/plankt/25.4.445
[22] Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepistö, L., Rintala, J., Mankiewicz-Boczek, J. and Sivonen, K. (2006) Detection of Microcystin-Producing Cyanobacteria in Finnish Lakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Applied and Environmental Microbiology, 72, 6101-6110.
https://doi.org/10.1128/AEM.01058-06
[23] Jacoby, J.M., Collier, D.C., Welch, E.B., Hardy, F.J. and Crayton, M. (2000) Environmental Factors Associated with a Toxic Bloom of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences, 57, 231-240. https://doi.org/10.1139/f99-234
[24] Huang, J. (2016) Detecting the Spatial Patterns of Blue-Green Algae in Harsha Lake using Landsat 8 Imagery.
[25] Abrantes, N., Antunes, S., Pereira, M. and Gonçalves, F. (2006) Seasonal Succession of Cladocerans and Phytoplankton and Their Interactions in a Shallow Eutrophic Lake (Lake Vela, Portugal). Acta Oecologica, 29, 54-64.
[26] Reynolds, C. (1984) Phytoplankton Periodicity: The Interactions of Form, Function and Environmental Variability. Freshwater Biology, 14, 111-142.
https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
[27] Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. and Gardner, W.S. (2011) Controlling Harmful Cyanobacterial Blooms in a Hyper-Eutrophic Lake (Lake Taihu, China): The Need for a Dual Nutrient (N & P) Management Strategy. Water Research, 45, 1973-1983.
[28] Jensen, J., Jeppesen, E., Olrik, K. and Kristensen, P. (1994) Impact of Nutrients and Physical Factors on the Shift from Cyanobacterial to Chlorophyte Dominance in Shallow Danish Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1692-1699.
https://doi.org/10.1139/f94-170
[29] Kosten, S., Huszar, V.L., Bécares, E., Costa, L.S., Donk, E., Hansson, L.A., Jeppesen, E., Kruk, C., Lacerot, G. and Mazzeo, N. (2012) Warmer Climates Boost Cyanobacterial Dominance in Shallow Lakes. Global Change Biology, 18, 118-126.
https://doi.org/10.1111/j.1365-2486.2011.02488.x
[30] Zheng, Q.F., Sun, G.W., Li, J., Hou, Y.I. and Zhang, H. (2008) Research on Meteorological Condition Influencing Blue Algae Bloom in Tailake. Plateau Meteorology, S1.
[31] Rinta-Kanto, J.M. and Wilhelm, S.W. (2006) Diversity of Microcystin-Producing Cyanobacteria in Spatially Isolated Regions of Lake Erie. Applied and Environmental Microbiology, 72, 5083-5085.
https://doi.org/10.1128/AEM.00312-06
[32] Hotto, A., Satchwell, M. and Boyer, G. (2007) Molecular Characterization of Potential Microcystin-Producing Cyanobacteria in Lake Ontario Embayments and Nearshore Waters. Applied and Environmental Microbiology, 73, 4570-4578.
https://doi.org/10.1128/AEM.00318-07
[33] Moisander, P.H., Lehman, P.W., Ochiai, M. and Corum, S. (2009) Diversity of Microcystis aeruginosa in the Klamath River and San Francisco Bay Delta, California, USA. Aquatic Microbial Ecology, 57, 19-31. https://doi.org/10.3354/ame01320
[34] Steffen, M.M., Zhu, Z., McKay, R.M.L., Wilhelm, S.W. and Bullerjahn, G.S. (2014) Taxonomic Assessment of a Toxic Cyanobacteria Shift in Hypereutrophic Grand Lake St. Marys (Ohio, USA). Harmful Algae, 33, 12-18.
[35] Davis, T.W., Bullerjahn, G.S., Tuttle, T., McKay, R.M. and Watson, S.B. (2015) Effects of Increasing Nitrogen and Phosphorus Concentrations on Phytoplankton Community Growth and Toxicity during Planktothrix Blooms in Sandusky Bay, Lake Erie. Environmental Science & Technology, 49, 7197-7207. https://doi.org/10.1021/acs.est.5b00799