Back
 AS  Vol.8 No.10 , October 2017
AtDREB2A-CA Influences Root Architecture and Increases Drought Tolerance in Transgenic Cotton
Abstract: Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular mechanisms correlated with drought tolerance without reducing productivity is a challenge for plant breeding. In this way, we evaluated the effects of water deficit progress on AtDREB2A-CA transgenic cotton plant responses, driven by the stress-inducible rd29 promoter. Besides shoot and root morphometric traits, gas exchange and osmotic adjustment analyses were also included. Here, we present how altered root traits shown by transgenic plants impacted on physiological acclimation responses when submitted to severe water stress. The integration of AtDREB2A-CA into the cotton genome increased total root volume, surface area and total root length, without negatively affecting shoot morphometric growth parameters and nor phenotypic evaluated traits. Additionally, when compared to wild-type plants, transgenic plants (17-T0 plants and its progeny) highlighted a gradual pattern of phenotypic plasticity tosome photosynthetic parameters such as photosynthetic rate and stomatal conductance with water deficit progress. Transgene also promoted greater shoot development and root robustness (greater and deeper root mass) allowing roots to grow into deeper soil layers. The same morpho-physiological trend was observed in the subsequent generation (17.6-T2). Our results suggest that the altered root traits shown by transgenic plants are the major contributors to higher tolerance response, allowing the AtDRE2A-CA-cotton plants to maintain elevated stomatal conductance and assimilate rates and, consequently, reducing their metabolic costs involved in the antioxidant responses activation. These results also suggest that these morpho-physiological changes increased the number of reproductive structures retained per plant (26% higher) when compared with its non-transgenic counterpart. This is the first report of cotton plants overexpressing the AtDRE2A-CA transcription factor, demonstrating a morpho-physiological and yield advantages under drought stress, without displaying any yield penalty under irrigated conditions. The mechanisms by which the root traits influenced the acclimation of the transgenic plants to severe water deficit conditions are also discussed. These data present an opportunity to use this strategy in cotton breeding programs in order to improve drought adaptation toward better rooting features.
Cite this paper: Lisei-de-Sá, M. , M. Arraes, F. , Brito, G. , Beneventi, M. , Lourenço-Tessutti, I. , Basso, A. , Amorim, R. , M. Silva, M. , Faheem, M. , Oliveira, N. , Mizoi, J. , Yamaguchi-Shinozaki, K. and Grossi-de-Sa, M. (2017) AtDREB2A-CA Influences Root Architecture and Increases Drought Tolerance in Transgenic Cotton. Agricultural Sciences, 8, 1195-1225. doi: 10.4236/as.2017.810087.
References

[1]   Edmeades, G.O. (2013) Progress in Achieving and Delivering Drought Tolerance in Maize—An Update. ISAAA, Ithaca, NY.

[2]   FAO (2017) The Future of Food and Agriculture: Trends and Challenges.
http://www.fao.org/3/a-i6583e.pdf

[3]   Weber, R.L.M., Wiebke-Strohm, B., Bredemeier, C., Margis-Pinheiro, M., Brito, G.G., Rechenmacher, C., Bertagnolli, P.F., Lisei-de-Sá, M.E., Campos, M.A., Amorim, R.M.S., Beneventi, M.A., Margis, R., Grossi-de-Sa, M.F. and Bodanese-Zanettini, M.H. (2014) Expression of an Osmotin-Like Protein from Solanum nigrum Confers Drought Tolerance in Transgenic Soybean. BMC Plant Biology, 14 343.
https://doi.org/10.1186/s12870-014-0343-y

[4]   Brito, G.G., Fagundes, P.R.R., Telo, G.M., Abreu, A.G., Magalhaes-Júnior, A.M., Franco, D.F., Andres, A., Parfitt, J.M.B., Kunh, R. and Petrine, J.A. (2016) Impact of Supra-Optimal Temperatures Onphysiology and Yield in Rice Field. Journal of Agricultural Science, 8, 27.

[5]   ICAC (2014) Cotton, Review of the World Situation. International Cotton Advisory Committee.

[6]   Ton, P. (2011) Cotton and Climate Change: Impacts and Options to Mitigate and Adapt. International Trade Centre, 1-17.

[7]   Edmeades, G.O. (2008) Drought Tolerance in Maize: An Emerging Reality. International Service for the Acquisition of Agri-Biotech Applications (ISAAA).

[8]   Yang, S., Vanderbeld, B., Wan, J. and Huang, Y. (2010) Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Molecular Plant, 3, 469-490.
https://doi.org/10.1093/mp/ssq016

[9]   Smith, K.A. (2000) Soil and Environmental Analysis: Physical Methods, Revised, and Expanded. CRC Press.

[10]   Allen, R.D. (2012) Evaluation of Drought Tolerance Strategies in Cotton. National Agricultural Biotechnology Council, 45-63.

[11]   Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Gene Networks Involved in Drought Stress Response and Tolerance. Journal of Experimental Botany, 58, 221-227.
https://doi.org/10.1093/jxb/erl164

[12]   Lawlor, D.W. (2013) Genetic Engineering to Improve Plant Performance under Drought: Physiological Evaluation of Achievements, Limitations, and Possibilities. Journal of Experimental Botany, 64, 83-108.
https://doi.org/10.1093/jxb/ers326

[13]   Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2012) AP2/ERF Family Transcription Factors in Plant Abiotic Stress Responses. Biochimica et Biophysica Acta, 1819, 86-96.
https://doi.org/10.1016/j.bbagrm.2011.08.004

[14]   Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. The Plant Cell, 10, 1391-1406.
https://doi.org/10.1105/tpc.10.8.1391

[15]   Zhou, M.L., Ma, J.T., Pang, J.F., Zhang, Z.L., Tang, Y.X. and Wu, Y.M. (2010) Regulation of Plant Stress Response by Dehydration Responsive Element Binding (DREB) Transcription Factors. African Journal of Biotechnology, 9, 9255-9279.

[16]   Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription Factor. Nature Biotechnology, 17, 287-291.
https://doi.org/10.1038/7036

[17]   Polizel, A.M., Medri, M.E., Nakashima, K., Yamanaka, N., Farias, J.R.B., De Oliveira, M.C., Marin, S.R., Abdelnoor, R.V., Marcelino-Guimaraes, F.C. and Fuganti, R. (2011) Molecular, Anatomical and Physiological Properties of a Genetically Modified Soybean Line Transformed with rd29A: AtDREB1A for the Improvement of Drought Tolerance. Genetics and Molecular Research, 10, 3641-3656.
https://doi.org/10.4238/2011.October.21.4

[18]   Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. The Plant Cell, 18, 1292-1309.
https://doi.org/10.1105/tpc.105.035881

[19]   Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., Fujita, M., Yoshiwara, K., Matsukura, S., Morishita, Y., Sasaki, R., Suzuki, H., Saito, K., Shibata, D., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2009) Metabolic Pathways Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites and Transcripts Regulated by DREB1A and DREB2A. Plant Physiology, 150, 1972-1980.
https://doi.org/10.1104/pp.109.135327

[20]   Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. and Zhu, J.K. (2006) A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance. Journal of Biological Chemistry, 281, 37636-37645.
https://doi.org/10.1074/jbc.M605895200

[21]   Lata, C., Yadav, A. and Prasad, M. (2011) Role of Plant Transcription Factors in Abiotic Stress Tolerance.

[22]   Rehman, S. and Mahmood, T. (2015) Functional Role of DREB and ERF Transcription Factors: Regulating Stress-Responsive Network in Plants. Acta Physiologiae Plantarum, 37, 178.
https://doi.org/10.1007/s11738-015-1929-1

[23]   Agarwal, P.K., Gupta, K., Lopato, S. and Agarwal, P. (2017) Dehydration Responsive Element Binding Transcription Factors and Their Applications for the Engineering of Stress Tolerance. Journal of Experimental Botany, 68, 2135-2148.
https://doi.org/10.1093/jxb/erx118

[24]   Kasuga, M., Miura, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer. Plant and Cell Physiology, 45, 346-350.
https://doi.org/10.1093/pcp/pch037

[25]   Mishra, N., Sun, L., Zhu, X., Smith, J., Prakash Srivastava, A., Yang, X., Pehlivan, N., Esmaeili, N., Luo, H., Shen, G., Jones, D., Auld, D., Burke, J., Payton, P. and Zhang, H. (2017) Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and substantially Improves Fiberyields in the Field under Reduced Irrigation and Rainfed Conditions. Plant & Cell Physiology, 58, 735-746.
https://doi.org/10.1093/pcp/pcx032

[26]   Kerr, T.C., Abdel-Mageed, H., Aleman, L., Lee, J., Payton, P., Cryer, D. and Allen, R.D. (2017) Ectopic Expression of Two AREB/ABF Orthologs Increases Drought Tolerance in Cotton (Gossypium hirsutum). Plant, Cell & Environment, 18, 12906.

[27]   Yan, J., He, C., Wang, J., Mao, Z., Holaday, S.A., Allen, R.D. and Zhang, H. (2004) Overexpression of the Arabidopsis 14-3-3 Protein GF14λ in Cotton Leads to a “Stay-Green” Phenotype and Improves Stress Tolerance under Moderate Drought Conditions. Plant and Cell Physiology, 45, 1007-1014.
https://doi.org/10.1093/pcp/pch115

[28]   He, C., Yan, J., Shen, G., Fu, L., Holaday, A.S., Auld, D., Blumwald, E. and Zhang, H. (2005) Expression of an Arabidopsis Vacuolar Sodium/Proton Antiporter Gene in Cotton Improves Photosynthetic Performance under Salt Conditions and Increases Fiber Yield in the Field. Plant and Cell Physiology, 46, 1848-1854.
https://doi.org/10.1093/pcp/pci201

[29]   Maqbool, A., Abbas, W., Rao, A.Q., Irfan, M., Zahur, M., Bakhsh, A., Riazuddin, S. and Husnain, T. (2010) Gossypium arboreum GHSP26 Enhances Drought Tolerance in Gossypium hirsutum. Biotechnology Progress, 26, 21-25.

[30]   Momtaz, O.A., Hussein, E.M., Fahmy, E.M. and Ahmed, S.E. (2010) Expression of S-Adenosyl Methionine Decarboxylase Gene for Polyamine Accumulation in Egyptian cotton Giza 88 and Giza 90. GM Crops, 1, 257-266.
https://doi.org/10.4161/gmcr.1.4.13779

[31]   Shi, J., Zhang, L., An, H., Wu, C. and Guo, X. (2011) GhMPK16, a Novel Stress-Responsive Group D MAPK Gene from Cotton, Is Involved in Disease Resistance and Drought Sensitivity. BMC Molecular Biology, 12, 22.
https://doi.org/10.1186/1471-2199-12-22

[32]   Pasapula, V., Shen, G., Kuppu, S., Paez-Valencia, J., Mendoza, M., Hou, P., Chen, J., Qiu, X., Zhu, L. and Zhang, X. (2011) Expression of an Arabidopsis Vacuolar H+Pyrophosphatase Gene (AVP1) in Cotton Improves Drought and Salt Tolerance and Increases Fibre Yield in the Field Conditions. Plant Biotechnology Journal, 9, 88-99.
https://doi.org/10.1111/j.1467-7652.2010.00535.x

[33]   Yue, Y., Zhang, M., Zhang, J., Tian, X., Duan, L. and Li, Z. (2012) Overexpression of the AtLOS5 Gene Increased Abscisic Acid Level and Drought Tolerance in Transgenic Cotton. Journal of Experimental Botany, 63, 3741-3748.
https://doi.org/10.1093/jxb/ers069

[34]   Shamim, Z., Rashid, B., Rahman, S. and Husnain, T. (2013) Expression of Drought Tolerance in Transgenic Cotton. Science Asia, 39, 1-11.
https://doi.org/10.2306/scienceasia1513-1874.2013.39.001

[35]   Kuppu, S., Mishra, N., Hu, R., Sun, L., Zhu, X., Shen, G., Blumwald, E., Payton, P. and Zhang, H. (2013) Water-Deficit Inducible Expression of a Cytokinin Biosynthetic Gene IPT Improves Drought Tolerance in Cotton. PLoS ONE, 8, e64190.
https://doi.org/10.1371/journal.pone.0064190

[36]   Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y. and Zhang, X. (2014) Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton. PLoS ONE, 9, e86895.
https://doi.org/10.1371/journal.pone.0086895

[37]   Zhang, F., Li, S., Yang, S., Wang, L. and Guo, W. (2015) Overexpression of a Cotton Annexin Gene, GhAnn1, Enhances Drought and Salt Stress Tolerance in Transgenic Cotton. Plant Molecular Biology, 87, 47-67.
https://doi.org/10.1007/s11103-014-0260-3

[38]   Gunapati, S., Naresh, R., Ranjan, S., Nigam, D., Hans, A., Verma, P.C., Gadre, R., Pathre, U.V., Sane, A.P. and Sane, V.A. (2016) Expression of GhNAC2 from G. herbaceum, Improves Root Growth and Imparts Tolerance to Drought in Transgenic Cotton and Arabidopsis. Scientific Reports, 6, 24978.
https://doi.org/10.1038/srep24978

[39]   Liang, C., Meng, Z., Meng, Z., Malik, W., Yan, R., Lwin, K.M., Lin, F., Wang, Y., Sun, G., Zhou, T., Zhu, T., Li, J., Jin, S., Guo, S. and Zhang, R. (2016) GhABF2, a bZIP Transcription Factor, Confers Drought and Salinity Tolerance in Cotton (Gossypium hirsutum L.), Scientific Reports, 6, 35040.
https://doi.org/10.1038/srep35040

[40]   Rahnama, A., James, R.A., Poustini, K. and Munns, R. (2010) Stomatal Conductance as a Screen for Osmotic Stress Tolerance in Durum Wheat Growing in Saline Soil. Functional Plant Biology, 37, 255-263.
https://doi.org/10.1071/FP09148

[41]   Flexas, J., Bota, J., Galmes, J., Medrano, H. and Ribas-Carbó, M. (2006) Keeping a Positive Carbon Balance under Adverse Conditions: Responses of Photosynthesis and Respiration to Water Stress. Physiologia Plantarum, 127, 343-352.
https://doi.org/10.1111/j.1399-3054.2006.00621.x

[42]   Mafakheri, A., Siosemardeh, A.F., Bahramnejad, B., Struik, P.C. and Sohrabi, Y. (2010) Effect of Drought Stress on Yield, Proline and Chlorophyll Contents in Three Chickpea Cultivars. Journal of Crop Science, 4, 777-780.

[43]   Gregory, P.J., Atkinson, C.J., Bengough, A.G., Else, M.A., Fernandez-Fernandez, F., Harrison, R.J. and Schmidt, S. (2013) Contributions of Roots and Rootstocks to Sustainable, Intensified Crop Production. Journal of Experimental Botany, 64, 1209-1222.
https://doi.org/10.1093/jxb/ers385

[44]   Vianna, G.R., Aragao, F.J.L. and Rech, E.L. (2011) A Minimal DNA Cassette as a Vector for Genetic Transformation of Soybean (Glycine max). Genetics and Molecular Research, 10, 382-390.
https://doi.org/10.4238/vol10-1gmr1058

[45]   Engels, C., Fuganti-Pagliarini, R., Marin, S.R., Marcelino-Guimaraes, F.C., Oliveira, M.C., Kanamori, N., Mizoi, J., Nakashima, K., Yamaguchi-Shinozaki, K. and Nepomuceno, A.L. (2013) Introduction of the rd29A:AtDREB2A-CA Gene into Soybean (Glycine max L. Merril) and Its Molecular Characterization in Leaves and Roots during Dehydration. Genetics and Molecular Biology, 36, 556-565.
https://doi.org/10.1590/S1415-47572013000400015

[46]   Aragao, F.J.L., Sarokin, L., Vianna, G.R. and Rech, E.L. (2000) Selection of Transgenic Meristematic Cells Utilizing a Herbicidal Molecule Results in the Recovery of Fertile Transgenic Soybean [Glycine max (L.) Merril] Plants at a High Frequency. Theoretical and Applied Genetics, 101, 1-6.
https://doi.org/10.1007/s001220051441

[47]   Rech, E.L., Vianna, G.R. and Aragao, F.J.L. (2008) High-Efficiency Transformation by Biolistics of Soybean, Common Bean and Cotton Transgenic Plants. Nature Protocols, 3, 410-418.
https://doi.org/10.1038/nprot.2008.9

[48]   Michiels, A., Van-den-Ende, W., Tucker, M., Van-Riet, L. and Van-Laere, A. (2003) Extraction of High-Quality Genomic DNA from Latex-Containing Plants. Analytical Biochemistry, 315, 85-89.
https://doi.org/10.1016/S0003-2697(02)00665-6

[49]   McDonald, M.B., Elliot, L.J. and Sweeney, P.M. (1997) DNA Extraction from Dry Seeds for RAPD Analyses. In: Ellis, R.H., Black, M., Murdoch, A.J. and Hong, T.D., Eds., Basic and Applied Aspects of Seed Biology: Proceedings of the Fifth International Workshop on Seeds, Reading, Springer, Netherlands, Dordrecht, 747-753.
https://doi.org/10.1007/978-94-011-5716-2_81

[50]   Zhao, S. and Fernald, R.D. (2005) Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction. Journal of Computational Biology, 12, 1047-1064.
https://doi.org/10.1089/cmb.2005.12.1047

[51]   Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. (2007) qBase Relative Quantification Framework and Software for Management and Automated Analysis of Real-Time Quantitative PCR Data. Genome Biology, 8, R19.
https://doi.org/10.1186/gb-2007-8-2-r19

[52]   Yang, X., Li, F., Liu, C., Zhang, X., Liu, K., Fang, W., Wu, Z., Xie, D., Zhang, C., Wang, Q. and Zhao, F. (2012) Analysis of the Copy Number of Exogenous Genes in Transgenic Cotton Using Real-Time Quantitative PCR and the 2-△△Ct Method. African Journal of Biotechnology, 11, 6226-6233.

[53]   Ribeiro, T.P., Arraes, F.B.M., Lourenco-Tessutti, I.T., Silva, M.S., Lisei-de-Sa, M.E., Lucena, W.A., Macedo, L.L.P., Lima, J.N., Santos Amorim, R.M., Artico, S., Alves-Ferreira, M., Mattar Silva, M.C. and Grossi-de-Sa, M.F. (2017) Transgenic Cotton Expressing Cry10Aa Toxin Confers High Resistance to the Cotton Boll Weevil. Plant Biotechnology Journal, 15, 997-1009.
https://doi.org/10.1111/pbi.12694

[54]   Hoagland, D.R. and Arnon, D.I. (1938) The Water-Culture Method for Growing Plants without Soil. University of California.

[55]   Marani, A., Baker, D.N., Reddy, V.R. and McKinion, J.M. (1985) Effect of Water Stress on Canopy Senescence and Carbon Exchange Rates in Cotton. Crop Science, 25, 798-802.
https://doi.org/10.2135/cropsci1985.0011183X0025000500018x

[56]   Jordan, W.R. and Ritchie, J.T. (1971) Influence of Soil Water Stress on Evaporation, Root Absorption, and Internal Water Status of Cotton. Plant Physiology, 48, 783-788.
https://doi.org/10.1104/pp.48.6.783

[57]   Blum, A. (1989) Osmotic Adjustment and Growth of Barley Genotypes under Drought Stress. Crop Science, 29, 230-233.
https://doi.org/10.2135/cropsci1989.0011183X002900010052x

[58]   Brito, G.G., Sofiatti, V., Lima, M.M.A., Carvalho, L.P. and Silva-Filho, J.L. (2011) Physiological Traits for Drought Phenotyping in Cotton. Acta Scientiarum Agronomy, 33, 117-125.
https://doi.org/10.4025/actasciagron.v33i1.9839

[59]   Chen, L., Auh, C.K., Dowling, P., Bell, J., Chen, F., Hopkins, A., Dixon, R.A. and Wang, Z.Y. (2003) Improved Forage Digestibility of Tall Fescue (Festuca arundinacea) by Transgenic Down-Regulation of Cinnamyl Alcohol Dehydrogenase. Plant Biotechnology Journal, 1, 437-449.
https://doi.org/10.1046/j.1467-7652.2003.00040.x

[60]   Wang, Z.Y., Bell, J., Ge, Y.X. and Lehmann, D. (2003) Inheritance of Transgenes in Transgenic Tall Fescue (Festuca arundinacea schreb.). In Vitro Cellular & Developmental Biology—Plant, 39, 277-282.
https://doi.org/10.1079/IVP2002392

[61]   Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N., Langridge, P. and Lopato, S. (2011) Improvement of Stress Tolerance of Wheat and Barley by Modulation of Expression of DREB/CBF Factors. Plant Biotechnology Journal, 9, 230-249.
https://doi.org/10.1111/j.1467-7652.2010.00547.x

[62]   Bhatnagar-Mathur, P., Rao, J.S., Vadez, V., Dumbala, S.R., Rathore, A., Yamaguchi-Shinozaki, K. and Sharma, K.K. (2014) Transgenic Peanut Overexpressing the DREB1A Transcription Factor Has Higher Yields under Drought Stress. Molecular Breeding, 33, 327-340.
https://doi.org/10.1007/s11032-013-9952-7

[63]   Bihani, P., Char, B. and Bhargava, S. (2011) Transgenic Expression of Sorghum DREB2 in Rice Improves Tolerance and Yield under Water Limitation. Journal of Agricultural Science, 149, 95-101.
https://doi.org/10.1017/S0021859610000742

[64]   Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K. and Hoisington, D. (2004) Stress-Induced Expression in Wheat of the Arabidopsis thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions. Genome, 47, 493-500.
https://doi.org/10.1139/g03-140

[65]   Soltesz, A., Smedley, M., Vashegyi, I., Galiba, G., Harwood, W. and Vagujfalvi, A. (2013) Transgenic Barley Lines Prove the Involvement of TaCBF14 and TaCBF15 in the Cold Acclimation Process and in Frost Tolerance. Journal of Experimental Botany, 64, 1849-1862.
https://doi.org/10.1093/jxb/ert050

[66]   Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) OsDREB Genes in Rice, Oryza sativa L., Encode Transcription Activators That Function in Drought-, High-Salt- and Cold-Responsive Gene Expression. Plant Journal, 33, 751-763.
https://doi.org/10.1046/j.1365-313X.2003.01661.x

[67]   Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q. and Chen, S.Y. (2003) An EREBP/AP2-Type Protein in Triticum aestivum Was a DRE-Binding Transcription Factor Induced by Cold, Dehydration and ABA Stress. Theoretical and Applied Genetics, 106, 923-930.
https://doi.org/10.1007/s00122-002-1131-x

[68]   Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H. and Kim, J.K. (2005) Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiology, 138, 341-351.
https://doi.org/10.1104/pp.104.059147

[69]   Yamaguchi-Shinozaki, K. and Shinozaki, K. (1993) Characterization of the Expression of a Desiccation-Responsive rd29 Gene of Arabidopsis thaliana and Analysis of Its Promoter in Transgenic Plants. Molecular and General Genetics, 236, 331-340.
https://doi.org/10.1007/BF00277130

[70]   Bihmidine, S., Lin, J., Stone, J.M., Awada, T., Specht, J.E. and Clemente, T.E. (2013) Activity of the Arabidopsis RD29A and RD29B Promoter Elements in Soybean Under Water Stress. Planta, 237, 55-64.
https://doi.org/10.1007/s00425-012-1740-9

[71]   Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences, 103, 18822-18827.
https://doi.org/10.1073/pnas.0605639103

[72]   Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E. and Koskull-Doring, V. (2008) A Cascade of Transcription Factor DREB2A and Heat Stress Transcription Factor HsfA3 Regulates the Heat Stress Response of Arabidopsis. Plant Journal, 53, 264-274.
https://doi.org/10.1111/j.1365-313X.2007.03334.x

[73]   Reis, R.R., Cunha, B.A.D.B., Martins, P.K., Martins, M.T.B., Alekcevetch, J.C., Chalfun-Junior, A., Andrade, A.C., Ribeiro, A.P., Qin, F. and Mizoi, J. (2014) Induced Over-Expression of AtDREB2A-CA Improves Drought Tolerance in Sugarcane. Plant Science, 221, 59-68.
https://doi.org/10.1016/j.plantsci.2014.02.003

[74]   Pruthvi, V., Narasimhan, R. and Nataraja, K.N. (2014) Simultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.). PLoS ONE, 9, e111152.
https://doi.org/10.1371/journal.pone.0111152

[75]   Wilson, C., Bellen, H.J. and Gehring, W.J. (1990) Position Effects on Eukaryotic Gene Expression. Annual Review of Cell Biology, 6, 679-714.
https://doi.org/10.1146/annurev.cb.06.110190.003335

[76]   Heinrichs, A. (2008) Small RNAs: United in Silence. Nature Reviews, 9, 496-496.
https://doi.org/10.1038/nrm2429

[77]   Brito, G.G., Suassuna, N.D., Diola, V., Sofiatti, V., Ducatti, C., Silva, E.T. and Morello, C.L. (2014) Carbon Isotope Fractionation for Cotton Genotype Selection. Pesquisa Agropecuária Brasileira, 49, 673-682.
https://doi.org/10.1590/S0100-204X2014000900003

[78]   Vadez, V., Rao, J.S., Bhatnagar-Mathur, P. and Sharma, K.K. (2013) DREB1A Promotes Root Development in Deep Soil Layers and Increases Water Extraction under Water Stress in Groundnut. Plant Biology, 15, 45-52.
https://doi.org/10.1111/j.1438-8677.2012.00588.x

[79]   Larcher, W. (2000) Temperature Stress and Survival Ability of Mediterranean Sclerophyllous Plants. Plant Biosystems, 134, 279-295.
https://doi.org/10.1080/11263500012331350455

[80]   Isoda, A. and Wang, P. (2002) Leaf Temperature and Transpiration of Field Grown Cotton and Soybean under Arid and Humid Conditions. Plant Production Science, 5, 224-228.
https://doi.org/10.1626/pps.5.224

[81]   Barnabas, B., Jager, K. and Feher, A. (2008) The Effect of Drought and Heat Stress on Reproductive Processes in Cereals. Plant, Cell & Environment, 31, 11-38.

[82]   O’Neill, S.D. (1983) Role of Osmotic Potential Gradients during Water Stress and Leaf Senescence in Fragaria virginiana. Plant Physiology, 72, 931-937.
https://doi.org/10.1104/pp.72.4.931

[83]   Suarez, N. and Sobrado, M.A. (2000) Adjustments in Leaf Water Relations of Mangrove (Avicennia germinans) Seedlings Grown in a Salinity Gradient. Tree Physiology, 20, 277-282.
https://doi.org/10.1093/treephys/20.4.277

[84]   Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K. and Noitsakis, B. (2002) The Role of Organic Solute and Ion Accumulation in Osmotic Adjustment in Drought-Stressed Grapevines. Plant Science, 163, 361-367.
https://doi.org/10.1016/S0168-9452(02)00140-1

[85]   Quarrie, S.A., Stojanovic, J. and Pekic, S. (1999) Improving Drought Resistance in Small-Grained Cereals: A Case Study, Progress and Prospects. Plant Growth Regulation, 29, 1-21.
https://doi.org/10.1023/A:1006210722659

[86]   Serraj, R. and Sinclair, T.R. (2002) Osmolyte Accumulation: Can It Really Help Increase Crop Yield under Drought Conditions? Plant, Cell & Environment, 25, 333-341.
https://doi.org/10.1046/j.1365-3040.2002.00754.x

 
 
Top