Back
 ABC  Vol.7 No.5 , October 2017
Synthesis, Characterizations, Biological, and Molecular Docking Studies of Some Amino Acid Schiff Bases with Their Cobalt(II) Complexes
Abstract: The synthesis and structural characterization of cobalt(II) complexes of amino acid Schiff bases was prepared from Salicylaldehyde and three amino acid (Valine, Leucine, and Isoleucine) in basic medium. The metal complexes was synthesized by treating an ethanolic solution of the ligand with appropriate amount of metal salts [1:2] [M:L] ratio. The synthesized Schiff bases and their metal complexes have been investigated on the bases of elemental chemical analysis, FTIR, electronic spectral, 1HNMR, 13CNMR, MS, molar conductance and magnetic susceptibility measurements. The electronic spectra of the metal complexes and their magnetic susceptibility measurements suggest octahedral structures are the probable coordination geometries for the isolated complexes. The Schiff bases and their metal complexes were preliminary scanned against various strains of microbes to study their biological effect.
Cite this paper: Salama, M. , Ahmed, S. and Hassan, S. (2017) Synthesis, Characterizations, Biological, and Molecular Docking Studies of Some Amino Acid Schiff Bases with Their Cobalt(II) Complexes. Advances in Biological Chemistry, 7, 182-194. doi: 10.4236/abc.2017.75013.
References

[1]   Abdelseed, F. and El-ajaily, M. (2009) Preparation and Spectroscopic Investigation of a Schiff Base Metal Complexes. International Journal of PharmTech Research, 1, 1097-1103.

[2]   Ebiad, Y., Soliman, H. and Abdella, M. (2010) Experimental and Theoretical Investigation of Spectral Tautomerism and Acid Base Properties of Schiff bases Derived from Some Amino Acids. Bulletin of the Korean Chemical Society, 31, 850-858.

[3]   Turner, M., Alkgun, E., Toroglu, S., Kayaldiz, A. and Donbak, I. (2008) Synthesis and Characterization of Schiff Base Metal Complexes: TheirAntimicrobial Genotoxicity and Electrochemical Properties. Journal of Coordination Chemistry, 61, 2935-2949.

[4]   Iqbal, N., Iqbal, J. and Imran, M. (2009) Synthesis, Characterization and Antibacterial Studies of Some Metal Complexes of Schiff Base Derived from Benzaldehyde and Sulfonamide. Journal of Scientific Research, xxxix, 1-19.

[5]   Raman, N., Raja, D. and Sakthivel, A. (2007) Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies. Journal of Chemical Sciences, 119, 303-310.
https://doi.org/10.1007/s12039-007-0041-5

[6]   Al Zoubi, W. (2013) Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works. International Journal of Organic Chemistry, 3, 73-95.
https://doi.org/10.4236/ijoc.2013.33A008

[7]   Anacona, J., Calvo, J. and Almanaza, O. (2013) Synthesis Spectroscopic and Magnetic Studies of Mono- and Polynuclear Schiff Base Metal Complexes Containing Salicylidene-Cefotaxime Ligands. International of Inorganic Chemistry, Article ID: 108740.

[8]   Katwal, R., Kaur, H. and Kapur, B. (2013) Application of Copper Schiff Base Complexes: A Review. Sci. Revs. Chem. Common, 3, 1-15.

[9]   Erdem, E., Sari, E., Kilincarslan, R. and Kabay, N. (2009) Synthesis and Characterization of Azo-Link Schiff Bases and Their Nickel(II), Copper(II), and Zinc(II) Complexes. Transition Metal Chemistry, 34, 167-174.
https://doi.org/10.1007/s11243-008-9173-9

[10]   Hansen, P. (2015) Isotope Effects on Chemical Shifts in the Study of Intramolecular Hydrogen Bonds. Molecules, 20, 2405-2424.
https://doi.org/10.3390/molecules20022405

[11]   Kumar, R., Sharma, P. and Pareek, A. (2013) Synthesis of New Schiff Base Complexes and Their Application. International Journal of Applied Research & Studies, 2, 1-6.

[12]   El-ajaily, M., Maihub, A. and Al-tajory, A. (2007) Amono Acid Schiff Base Complexes of Mn(II), Co(II), Ni(II), Cu(II), and Cd(II), Transition Metal Ions. Egypt. Journal of Analytical Chemistry, 16, 16-23.

[13]   Maihub, A., Alassbaly, F., El-Ajaily, M. and Etorki, A. (2014) Modification on Synthesis of Mixed Ligand Chelates by using Di- and Trivalent Transition Metal Ions with Schiff Bases as Primary Ligands. Green and Sustainable Chemistry, 4, 103-110.
https://doi.org/10.4236/gsc.2014.43015

[14]   Al-Amery, M. (2013) Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d] Thiazol-2-Ylamino)-2-phenyl Acetonitrile Ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Zinc(II), Cadmium(II) and Mercury(II), Divalent Transition Metal Ions. Journal of Applied Chemistry, 4, 29-34.

[15]   Maihub, A., El-ajaily, M. and El-hassy, N. (2012) Titanium(IV), Chromium(III), and Iron(III) Complexes of Schiff Base Derived from Aldehyde and Primary Amine. International Journal of ChemTech Research, 4, 631-633.

[16]   Al-Amery, M. (2014) Synthesis and Characterization of New Complexes of 2-(2-Hydroxy phenyl)-2-N-Amino (4-Chloro-Benzothiazol-2-Y1) Acetonitrile Ligand with Some Divalent Transition Metal Ions. International Journal of Science and Research, 3, 3059-3064.

[17]   Abuamer, K., Maihub, A., El-Ajaily, M., El-Torki, A., Aboukrishma, M. and Almagani, M. (2014) The Role of Aromatic Schiff Bases in the Dyes Techniques. International Journal of Organic Chemistry, 4, 7-15.
https://doi.org/10.4236/ijoc.2014.41002

[18]   Alabdali, A. (2012) Synthesis and Characterization of NEW Complexes of (N-P-Amino Diphenyl Amine) Amino (2-Hydroxy Phenyl) Acetonitrile Ligands with Some Transition Metal Ions. Joural of Applied Chemistry, 3, 5-10.

[19]   Ossonicz, P., Janus, E., Schoerder, G. and Rozwadowski, Z. (2013) Spectroscopic Studies of Amino Acid Ionic Ligand-Supported Schiff Bases. Molecules, 18, 4986-5004.
https://doi.org/10.3390/molecules18054986

[20]   Al-Amiery, A., Kadhum, A. and Mohamad, A. (2012) Antifungal and Antioxidant Activities of Pyrrolidone. Thiosemicarbazone Complexes. Bioinorganic Chemistry and Applications, 1-6.

[21]   Meng, X.Y., Zhang, H.X., Mezel, M. and Cui, M. (2011) Molecular Docking: A Powerfull Approach to Structure-Based Drug Discovery. Current Computer— Aided Drug Design, 7, 146-157.
https://doi.org/10.2174/157340911795677602

 
 
Top