JBiSE  Vol.2 No.6 , October 2009
Wavelet based detection of ventricular arrhythmias with neural network classifier
Abstract: This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the Electrocardiogram (ECG) signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. These coefficients are fed to the feed forward neural network which classifies the arrhythmias. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.
Cite this paper: nullArumugam, S. , Gurusamy, G. and Gopalasamy, S. (2009) Wavelet based detection of ventricular arrhythmias with neural network classifier. Journal of Biomedical Science and Engineering, 2, 439-444. doi: 10.4236/jbise.2009.26064.

[1]   K. Anant, F. Dowla, and G. Rodrigue, (1995) Vector quantiza-tion of ECG wavelet coefficients, IEEE Signal Processing Let-ters, 2(7).

[2]   M. Vetterli, (1992) Wavelets and filter banks: Theory and de-sign, IEEE Transactions on Signal Processing, 2207– 2232.

[3]   R. M. Rao and A. S. Bopardikar, (1998) Wavelet transforms: Introduction to theory and applications, Addison Wesley Longman.

[4]   L. Khadra, A. S. Al-Fahoum, and H. Al-Nashash, (1997) De-tection of life threatening cardiac arrhythmia using the wavelet transformation, Med. Biol. Eng. Comput., 35, 626–632.

[5]   P. S. Addison, J. N. Watson, G. R. Clegg, M. Holzer, F. Sterz, and C. E. Robertson, (2000) Evaluating arrhythmias in ECG signals using wavelet transforms, IEEE Engineering in Medi-cine and Biology Magazine, 19, 104– 109.

[6]   H. A. N. Dinh, D. K. Kumar, N. D. Pah, and P. Burton, (2001) Wavelets for QRS detection, Proceedings of the 23rd Annual Conference, IEEE EMS, Istanbul, Turkey, 35–38.

[7]   S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, (1999) Wavelet transform based QRS complex detector, IEEE Trans-action on Biomedical Engineering, 46(7), 838–848.

[8]   I. Romero, L. Serrano, and Ayesta, (2001) ECG frequency domain features extraction: A new characteristic for arrhyth-mias classification, Conference of the IEEE Engineering in Medicine and Biology Society.

[9]   S. M. Szilagyi and L. Szilagyi, (2000) Wavelet transform and neural network based adaptive filtering for QRS detection, Proceedings of World Congress on Medical Physics and Bio-medical Engineering, Chicago, USA.

[10]   D. E. Rumelhart, G. E. Hinton, and R. J Williams, (1986) Learning representations by back-propagation errors, Nature.

[11]   V. X. Afonso and W. J. Tompkins, (1995) Detecting ventricular fibrillation, IEEE Eng. Boil., 152–159.

[12]   A. Langer, M. S. Heilman, and M. M. Mower, (1976) Consid-erations in the development of the automatic implantable defi-brillator, Medical Instrumentation, 10(3), 163–167.

[13]   S. Chen, N. V. Thakor, and M. M. Mover, Ventricular fibrilla-tion detection by a regression test on the autocorrelation func-tion, Med. Biol. Eng. Comput., 25(3), 241– 249.

[14]   S. W. Chen, P. W. Clarkson, and Q. Fan, (1996) A robust detec-tion algorithm for cardiac arrhythmia classification, IEEE Transactions on Biomedical Engineering, 43, 1120–1125.

[15]   R. H. Clayton, A. Murray, and R.W. F. Campbell, (1994) Rec-ognition of ventricular fibrillation using neural networks, Med. Bio. Eng. Comp., 32, 217–220.

[16]   S. Kuo and R. Dillman, (1978) Computer detection of ven-tricular fibrillation, Computer Cardiology, 347–349.

[17]   S. Barro, R. Ruiz, D. Cabello, and J. Mira, (1989) Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artifacts: A diagnostic system, Journal on Biomedical Engineering, 11(4), 320–328.

[18]   V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, (1999) ECG beat detection using filter banks, IEEE Transac-tions on Biomedical Engineering, 46(2), 192– 202,.

[19]   G. Selvakumar, B. K. Bhoopathy, and R. B. Chidhambara, (2007) Wavelet decomposition for detection and classification of critical ECG arrhythmias, Proc. of the 8th WSEAS Int. Conf. on Mathematics And Computers in Biology and Chemistry, Vancouver, Canada.

[20]   G. Bortalan and J. L. Willems, (1993) Diagnostic ECG classi-fication based on neural networks, Journal of Electrocardiology, 26, 75–79.

[21]   Z. Dokur, T. Olmez, and E. Yazgan, (1997) Detection of ECG waveforms by neural networks, Journal on Medical Engineer-ing and Physics, 19(8), 738–741.

[22]   L. Edenbrandt, B. Heden, and O. Pahlm, (1993) Neural net-works for analysis of ECG complexes, Journal of Electrocardi-ology, 26, 74.

[23]   R. Silipo and C. Marchesi, (1998) Artificial neural networks for automatic ECG analysis, IEEE Trans. on Signal Processing, 46.

[24]   A. S. Al-Fahoum and I. Howitt, (1999) Combined wavelet transformation and radial basis neural networks for classifying life threatening cardiac arrhythmias, Med. Biol. Eng. Comput., 37, 566–573.

[25]   MIT-BIH (