MSCE  Vol.5 No.10 , October 2017
A Polypyrrole Hybrid Material Self-Assembled with Porphyrin: Facial Synthesis and Enhanced Optical Limiting Properties
Abstract: Polypyrrole/porphyrin nanohybrid (PPy/Tpp(OH)4 nanohybrid) have been synthesized through a self-assembled approach, and the assynthesized PPy/Tpp(OH)4 nanohybrid are characterized by Fourier-transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetric analysis, Ultraviolet-visible absorption, scanning electron microscopy, and steady state fluorescence spectroscopic techniques. Formation of the PPy/Tpp(OH)4 nanohybrid dramatically improved the solubility and processability of the PPy-based nanomaterial. The nonlinear optical (NLO) properties of PPy/Tpp(OH)4 nanohybrid were measured by Z-scan at 532 nm with nanosecond laser pulse, the results indicating that PPy/Tpp(OH)4 nanohybrid exhibits a enhanced NLO property in comparison with the benchmark PPy and Tpp(OH)4 due to a combination of mechanisms.
Cite this paper: Wang, Y. , Wang, A. , Yang, P. , Hu, W. , Guo, X. , Zhang, J. , Li, C. and Zhang, C. (2017) A Polypyrrole Hybrid Material Self-Assembled with Porphyrin: Facial Synthesis and Enhanced Optical Limiting Properties. Journal of Materials Science and Chemical Engineering, 5, 26-43. doi: 10.4236/msce.2017.510003.

[1]   Torre, G.D.L., Vazquez, P., Lopez, F.A. and Torres, T. (2004) Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104, 3723-3750.

[2]   Zhang, L. and Wang, L. (2008) Recent Research Progress on Optical Limiting Property of Materials Based on Phthalocyanine, Its Derivatives, and Carbon Nanotubes. Journal of Materials Science, 43, 5692-5701.

[3]   Sajeev, U.S., Nambuthiri, V.V., Salah, A., Nampoori, V.P.N. and Anantharaman, M.R. (2010) Studies on the Nonlinear Optical Properties of RF Plasma Polymerized Aniline thin Films by Open Aperture z-Scan Technique. Synthetic Metals, 160, 15-16.

[4]   Lanzi, M. and Paganin, L. (2009) New Photosetting NLO-Active Polythiophenes with Enhanced Optical Stability. European Polymer Journal, 45, 1118-1126.

[5]   Ke, R., Zhang, X.M., Zhang, S.Y., Li, S.L., Mao, C.J., Niu, H.L., Song, J.M. and Tian, Y.P. (2015) Self-Catalytic Polymerization of Water-Soluble Selenium/Polypyrrole Nanocomposite and Its Nonlinear Optical Properties. Physical Chemistry Chemical Physics, 17, 27548-27557.

[6]   Zhou, C., Zhang, Y.W., Li, Y.Y. and Liu, J.P. (2013) Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 13, 2078-2085.

[7]   Song, W.N., He, C.Y., Dong, Y.L., Zhang, W., Gao, Y.C., Wu, Y.Q. and Chen, Z.M. (2015) The Effects of Central Metals on the Photophysical and Nonlinear Optical Properties of Reduced Graphene Oxide-Metal(II) Phthalocyanine Hybrids. Physical Chemistry Chemical Physics, 17, 7149-7157.

[8]   Ye, Y.S., Chen, Y.N., Wang, J.S., Rick, J., Huang, Y.J., Chang, F.C. and Hwang, B.J. (2012) Versatile Grafting Approaches to Functionalizing Individually Dispersed Graphene Nanosheets Using RAFT Polymerization and Click Chemistry. Chemistry of Materials, 24, 2987-2997.

[9]   Luo, S.L., Liu, X.E., Wu, D.Q., Shi, G. and Mei, T. (2014) Tunable Conversion from Saturable Absorption to Reverse Saturable Absorption in Poly(pyrrole methine) Derivatives. Journal of Material Chemistry C, 2, 8850-8853.

[10]   Scandola, F., Chiorboli, C., Prodi, A., Iengo, E. and Alessio, E. (2006) Photophysical Properties of Metal-Mediated Assemblies of Porphyrins. Coordination Chemistry Reviews, 250, 1471-1496.

[11]   Imahori, H. and Fukuzumi, S. (2004) Porphyrin-and Fullerene-Based Molecular Photovoltaic Devices. Advanced Functional Materials, 14, 525-536.

[12]   Wang, J.J., Zhou, Z.J., Bai, Y., Liu, Z.B., Li, Y., Wu, D., Chen, W., Li, Z.R. and Sun, C.C. (2012) The Interaction between Superalkalis (M3O, M = Na, K) and a C20F20 Cage Forming Superalkali Electride Salt Molecules with Excess Electrons inside the C20F20 Cage: Dramatic Superalkali Effect on the Nonlinear Optical Property. Journal of Material and Chemistry, 22, 9652-9657.

[13]   Huang, C., Hu, C.L., Xu, X., Yang, B.P. and Mao, J.G. (2013) Tl(VO)2O2(IO3)3: A New Polar Material with a Strong SHG Response. Dalton Transactions, 42, 7051-7058.

[14]   Liu, C.G. and Guan, X.H. (2013) Computational Study on Redox-Switchable Second-Order Nonlinear Optical Properties of Totally Inorganic Keggin-Type Polyoxometalate Complexes. Journal of Physical Chemistry C, 117, 7776-7783.

[15]   Wang, Y.Q., Shi, Y., Pan, L.J., Ding, Y., Zhao, Y., Li, Y., Shi, Y. and Yu, G.H. (2015) Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels. Nano Letters, 15, 7736-7741.

[16]   Liu, Y.N., Jin, J.Y., Deng, H.P., Li, K., Zheng, Y.L., Yu, C.Y. and Zhou, Y.F. (2016) Protein-Framed Multi-Porphyrin Micelles for a Hybrid Natural-Artificial Light-Harvesting Nanosystem. Angewandte Chemie, 128, 8084-8089.

[17]   Wang, A.J., Long, L.L., Zhao, W., Song, Y.L., Humphrey, M.G., Cifuentes, M.P., Wu, X.Z., Fu, Y.S., Zhang, D.D., Li, X.F. and Zhang, C. (2013) Increased Optical Nonlinearities of Graphene Nanohybrids Covalently Functionalized by Axially-Coordinated Porphyrins. Carbon, 53, 327-338.

[18]   Jain, S., Karmakar, N., Shah, A., Kothari, D.C., Mishra, S. and Shimpi, N.G. (2017) Ammonia Detection of 1-D ZnO/Polypyrrole Nanocomposite: Effect of CSA Doping and Their Structural, Chemical, Thermal and Gas Sensing Behavior. Applied Surface Science, 396, 1317-1325.

[19]   Mao, H., Ji, C.G., Liu, M.H., Sun, Y., Liu, D.L., Wu, S.Y., Zhang, Y. and Song, X.M. (2016) Hydrophilic Polymers/Polypyrrole/Graphene Oxide Nanosheets with Different Performance in Electrocatalytic Application to Simultaneous Determination of Dopamine and Ascorbic Acid. RSC Advances, 6, 11632-11639.

[20]   Tabaciarova, J., Micusík, M., Fedorko, P. and Omastova, M. (2015) Study of Polypyrrole Aging by XPS, FTIR and Conductivity Measurements. Polymer Degradation and Stability, 120, 392-401.

[21]   Khadka, R., Aydemir, N., Kesküla, A., Tamm, T., Travas-Sejdic, J. and Kiefer, R. (2017) Enhancement of Polypyrrole Linear Actuation with Poly(Ethylene Oxide). Synthetic Metals, 232, 1-7.

[22]   Gong, F., Xu, X., Zhou, G. and Wang, Z.S. (2013) Enhanced Charge Transportation in a Polypyrrole Counter Electrode via Incorporation of Reduced Graphene Oxide Sheets for Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics, 15, 546-552.

[23]   Wang, A.J., Yu, W., Xiao, Z.G., Song, Y.L., Long, L.L., Cifuentes, M.P., Humphery, M.G. and Zhang, C. (2015) A 1,3-Dipolar Cycloaddition Protocol to Porphyrinfunctionalized Reduced Graphene Oxide with a Push-Pull Motif. Nano Research, 8, 870-886.

[24]   Wang, A.J., Yu, W., Huang, Z.P., Zhou, F., Song, J.B, Song, Y.L., Long, L.L., Cifuentes, M.P., Humphery, M.G., Zhang, L., Shao, J.D. and Zhang, C. (2015) Covalent Functionalization of Reduced Graphene Oxide with Porphyrin by Means of Diazonium Chemistry for Nonlinear Optical Performance. Scientific Reports, 6, 1-12.

[25]   Wang, J.J., Feng, M. and Zhan, H.B. (2013) Preparation, Characterization, and Nonlinear Optical Properties of Graphene Oxide-Carboxymethyl Cellulose Composite Films. Optics & Laser Technology, 57, 84-89.

[26]   Liu, M.Q., Zhao, J., Xiao, C.F., Quan, Q. and Li, X.F. (2016) PPy-Assisted Fabrication of Ag/TiO2 Visible-Light Photocatalyst and Its Immobiliza-tion on PAN Fiber. Materials and Design, 104, 428-435.

[27]   Balakumar, V. and Prakash, P. (2016) A Facile in Situ Synthesis of Highly Active and Reusable Ternary Ag-PPy-GO Nanocomposite for Catalytic Oxidation of Hydroquinone in Aqueous Solution. Journal of Catalysis, 344, 795-805.

[28]   Yang, K., Gu, M.Y., Guo, Y.P., Pan, X.F. and Mu, G.H. (2009) Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites. Carbon, 47, 1723-1737.

[29]   Jaouhari, A.E., Filotas, D., Laabd, M., Kiss, A., Bazzaoui, E.A., Nagy, L., Nagy, G., Albourine, A., Martins, J.I., Wang, R. and Bazzaoui, M. (2016) SECM Investigation of Electrochemically Synthesized Polypyrrole from Aqueous Medium. Journal of Applied Electrochemistry, 46, 1199-1209.

[30]   Osmieri, L., Videla, A.H.A.M. and Specchia, S. (2016) Optimization of a FeeNeC Electrocatalyst Supported on Mesoporous Carbon Functionalized with Polypyrrole for Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. International Journal of Hydrogen Energy, 41, 19610-19628.

[31]   Yan, J., Huang, Y., Chen, X.F. and Wei, C. (2016) Conducting Polymers-NiFe2O4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (EM) Wave Absorption Materials. Synthetic Metals, 221, 291-298.

[32]   Zhu, J.H., Li, Y.X., Chen, Y., Wang, J., Zhang, B., Zhang, J.J. and Blau, W.J. (2011) Graphene Oxide Covalently Functionalized with Zinc Phthalocyanine for Broadband optical Limiting. Carbon, 49, 1900-1905.

[33]   Li, C.L., Chen, N., Zhao, Y.N., Li, R. and Feng, C.P. (2016) Polypyrrole-Grafted Peanut Shell Biological Carbon as a Potential Sorbent for Fluoride Removal: Sorption Capability and Mechanism. Chemosphere, 163, 81-89.

[34]   Wang, A.J., Song, J.B, Huang, Z.P., Song, Y.L., Yu, W., Dong, H.L., Hu, W.P., Cifuentes, M.P., Humphery, M.G., Zhang, L., Shao, J.D. and Zhang, C. (2015) Multi-Walled Carbon Nanotubes Covalently Functionalized by Axially Coordinated Metal-Porphyrins: Facile Syntheses and Temporally Dependent Optical Performance. Nano Research, 9, 458-472.

[35]   Liu, Z.B., Tian, J.G., Guo, Z., Ren, D.M., Du, F., Zheng, J.Y. and Chen, Y.S. (2008) Enhanced Optical Limiting Effects in Porphyrin-Covalently Functionalized Single-Walled Carbon Nanotubes. Advanced Materials, 20, 511-515.

[36]   Li, H.P., Martin, R.B., Harruff, B.A., Carino, R.A., Allard, L.F. and Sun, Y.P. (2004) Single-Walled Carbon Nanotubes Tethered with Porphyrins: Synthesis and Photophysical Properties. Advanced Materials, 16, 896-900.

[37]   Xu, Y.F., Liu, Z.B., Zhang, X.L., Wang, Y., Tian, J.G., Huang, Y., Ma, Y.F., Zhang, X.Y. and Chen, Y.S. (2009) A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Advanced Materials, 21, 1275-1279.

[38]   Zhang, C.C., Chen, P.L., Dong, H.L, Zhen, Y.G., Liu, M.H. and Hu, W.P. (2015) Porphyrin Supramolecular 1D Structures via Surfactant Assisted Self-Assembly. Advanced Materials, 27, 5379-5387.

[39]   Wang, A.J., Fang, Y., Long, L.L., Song, Y.L., Yu, W., Zhao, W., Cifuentes, M.P., Humphrey, M.G. and Zhang, C. (2013) Facile Synthesis and Enhanced Nonlinear Optical Properties of Porphyrin-Functionalized Multi-Walled Carbon Nanotubes. Chemistry A European Journal, 19, 14159-14170.

[40]   Hedge, P.K., Adhikari, A.V., manjunatha, M.G., Sandeep, C.S.S. and Philip, R. (2010) A New Donor-Acceptor Type Conjugative Poly{2-[4-(1-Cyanoethenyl) phe-nyl]-3-(3,4-didodecyloxythiophen-2-yl)prop-2-enenitrile}: Synthesis and NLO Studies. Synthesitic Metals, 160, 15-16.

[41]   Liu, Z.B., Guo, Z., Zhang, X.L., Zheng, J.Y. and Tian, J.G. (2013) Increased Optical Nonlinearities of Multi-Walled Carbon Nanotubes Covalently Functionalized with Porphyrin. Carbon, 51, 419-426.

[42]   Krisshna, M.B.M., Venkatramaiah, N., Venkatesan, R. and Rao, D.N. (2012) Synthesis and Structural, Spectroscopic and Nonlinear Optical Measurements of Graphene Oxide and Its Composites with Metal and Metal Free Porphyrins. Journal of Material Chemistry, 22, 3059-3068.

[43]   Wang, L., Chen, T.L. and Jiang, J.Z. (2014) Controlling the Growth of Porphyrin Based Nanostructures for Tuning Third-Order NLO Properties. Nanoscale, 6, 1871-1878.

[44]   Pandey, R.K., Sandeep, C.S.S., Philip, R. and Lakshminarayanan, V. (2009) Enhanced Optical Nonlinearity of Polyaniline-Porphyrin Nanocomposite. Journal of Physical Chemistry C, 113, 8630-8634.

[45]   Huang, C.S., Li, Y.L., Song, Y.L, Li, Y.J., Liu, H.B. and Zhu, D.B. (2010) Ordered Nanosphere Alignment of Porphyrin for the Improvement of Nonlinear Optical Properties. Advanced Materials, 22, 3532-3536.

[46]   Gupta, J., Vijayan, C., Mauurya, S.K. and Goswami, D. (2012) Ultrafast Nonlinear Optical Response of Carbon Nanotubes Functionalized with Water Soluble Porphyrin. Optics Communications, 285, 1920-1924.

[47]   Nalla, V., Polavarapu, L., Manga, K.K., Goh, B.M., Loh, K.P., Xu, O.H. and Ji, W. (2010) Transient Photoconductivity and Femtosecond Nonlinear Optical Properties of a Conjugated Polymer-Graphene Oxide Composite. Nanotechnology, 21, 415203-415209.

[48]   Hiroshi, H. and Sakata, Y. (1997) Donor-Linked Fullerenes: Photoinduced Electron Transfer and Its Potential Application. Advanced Materials, 9, 537-546.

[49]   Anusha, P.T., Swain, D., Hamad, S., Giribabu, L., Prashant, T.S., Tewari, S.P. and Rao, S.V. (2012) Ultrafast Excited-State Dynamics and Dispersion Studies of Third Order Optical Nonlinearities in Novel Corroles. The Journal of Physical Chemistry C, 116, 17828-17837.

[50]   Krishna, M.B.M., kumer, V.P., Venkatramaiah, N., Venkatesan, R. and Rao, D.N. (2011) Nonlinear Optical Properties of Covalently Linked Graphene-Metal Porphyrin Composite Materials. Applied Physics Letters, 98, Article No. 08116.