be. Then the e S C I ( G ) is equal to

e S C I ( G ) = 6 8 p 2 + ( 2 5 + 4 6 + 8 7 13 8 ) p + s 2 + k 6 + 2 5 8 7 + 7 8 6

Proof. Let G be the graph of N A q p nanotube. Since from (6) we have

e S C I ( G ) = e f E ( L ( G ) ) 1 d e g L ( G ) ( e ) + d e g L ( G ) ( f )

By using edge partition from Table 2, we get

e S C I ( G ) = s × 1 2 + 2 + ( 2 p + 2 ) × 1 2 + 3 + k × 1 2 + 4 + ( 4 p 6 ) × 1 3 + 3 + ( 8 p 8 ) × 1 3 + 4 + ( 6 p 2 13 p + 7 ) × 1 4 + 4

After doing some calculations, we get

S e C I ( G ) = 6 8 p 2 + ( 2 5 + 4 6 + 8 7 13 8 ) p + s 2 + k 6 + 2 5 8 7 + 7 8 6

3. Conclusion

In this paper, we have discussed the edge version of augmented zagreb index, hyper-zagreb index, harmonic index and sum-connectivity index. We have considered the line graph of N A q p nanotube and we have computed the edge version of augmented zagreb index, hyper-zagreb index, harmonic index and sum-connectivity index for N A q p nanotube.

Cite this paper
Zhang, X. , Sajjad, W. , Baig, A. and Farahani, M. (2017) The Edge Version of Degree Based Topological Indices of p NAqp Nanotube. Applied Mathematics, 8, 1445-1453. doi: 10.4236/am.2017.810105.
References

[1]   Raut, N.K. (2014) Degree Based Topological Indices of Isomers of Organic Compounds. International Journal of Scientific and Research Publications, 4, 1-4.

[2]   Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20. https://doi.org/10.1021/ja01193a005

[3]   Randic, M. (1975) On Characterization of Molecular Branching. Journal of the American Chemical Society, 97, 6609-6615. https://doi.org/10.1021/ja00856a001

[4]   Ali, A., Raza, Z. and Bhatti, A. (2016) On the Augmented Zagreb Index. Kuwait Journal of Science, 43, 48-63.

[5]   Furtula, B., Graovac, A. and Vukicevic, D. (2010) Augmented Zagreb Index. Journal of Mathematical Chemistry, 48, 370-380. https://doi.org/10.1007/s10910-010-9677-3

[6]   Gutman, I. (2013) Degree Based Topological Indices. Croatica Chemica Acta, 86, 351-361. https://doi.org/10.5562/cca2294

[7]   Shirdel, G.H., Rezapour, H. and Sayadi, A.M. (2013) The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 4, 213-220.

[8]   Zhong, L. (2012) The Harmonic Index for Graphs. Applied Mathematics Letters, 25, 561-566. https://doi.org/10.1016/j.aml.2011.09.059

[9]   Zhong, L. (2012) The Harmonic Index on Unicyclic Graphs. Ars Combinatoria, 104, 261-269. http://dblp.org/rec/journals/arscom/Zhong12

[10]   Zhou, B. and Trinajstic, N. (2009) On a Novel Connectivity Index. Journal of Mathematical Chemistry, 46, 1252-1270. https://doi.org/10.1007/s10910-008-9515-z

[11]   Balaban, A.T. (1985) Applications of Graph Theory in Chemistry. Journal of Chemical Information and Modeling, 25, 334-343. https://doi.org/10.1021/ci00047a033

[12]   Basavanagoud, B. and Patil, S. (2016) A Note on Hyper-Zagreb index of Graph Operations. Iranian Journal of Mathematical Chemistry, 7, 89-92.

[13]   Diudea, M.V., Gutman, I. and Lorentz, J. (2001) Molecular Topology. Nova, Huntington.

[14]   Du, Z., Zhou, B. and Trinajstic, N. (2010) A Note on Generalized Sum-Connectivity Index. Applied Mathematics Letters, 24, 402-405. https://doi.org/10.1016/j.aml.2010.10.038

[15]   Du, Z. and Zhou, B. (2012) On Sum-Connectivity Index of Bycyclic Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 35, 101-117.

[16]   Ebrahimi, M. and Alaeiyan, M. (2016) Topological Indices and Interpolation of Sequences. Indian Journal of Science and Technology, 9, 1-4.

[17]   Essalih, M., Marraki, M. and Hagri, G. (2011) Calculation of Some Topological Indices of Graphs. Journal of Theoretical and Applied Information Technology, 30, 122-127.

[18]   Farahani, M.R. (2013) The Edge Version of Atom Bond Connectivity Index of Connected Graph. Acta Universitatis Apulensis, 36, 277-284.

[19]   Farahani, M.R. (2013) On the Randic and Sum-Connectivity Index of Nanotubes. Annals of West University of Timisoara-Mathematics and Computer Science, 51, 29-37.
https://doi.org/10.2478/awutm-2013-0014

[20]   Farahani, M.R. (2014) The Second Connectivity and Second-Sum-Connectivity Indices of Armchair Polyhex Nanotubes TUAC6[m, n]. International Letters of Chemistry, Physics and Astronomy, 11, 74-80. https://doi.org/10.18052/www.scipress.com/ILCPA.30.74

[21]   Farahani, M.R. (2015) The Hyper-Zagreb Index of TUSC4C8(S) Nanotubes. International Journal of Engineering and Technology Research, 3, 1-6.

[22]   Farahani, M.R. (2015) Computing the Hyper-Zagreb Index of Hexagonal Nanotubes. Journal of Chemistry and Materials Research, 2, 16-18.

[23]   Farahani, M.R. and Kanna, M.R. (2015) Generalized Zagreb Index of V-Phenylenic Nanotubes and Nanotori. Journal of Chemical and Pharmaceutical Research, 7, 241-245.

[24]   Fajtlowicz, S. (1987) On Conjectures of Graffiti-II. Congr. Numer., 60, 187-197.

[25]   Gutman, I.O. and Polansky, E. (1986) Mathematical Concepts in Organic Chemistry. Springer-Verlag, New York. https://doi.org/10.1007/978-3-642-70982-1

[26]   Gutman, I. (2015) Edge-Decomposition of Topological Indices. Iranian Journal of Mathematical Chemistry, 6, 103-108.

[27]   Hayat, S. and Imran, M. (2014) Computation of Certain Topological Indices of Nanotubes. Journal of Computational and Theoretical Nanoscience, 12, 1-7.
https://doi.org/10.1166/jctn.2015.3699

[28]   Hayat, S. and Imran, M. (2015) Computation of Certain Topological Indices of Nanotubes Covered by C5 and C7. Journal of Computational and Theoretical Nanoscience, 12, 533-541. https://doi.org/10.1166/jctn.2015.3761

[29]   Hayat, S. and Imran, M. (2014) Computation of Topological Indices of Certain Networks. Applied Mathematics and Computation, 240, 213-228. https://doi.org/10.1016/j.amc.2014.04.091

[30]   Iranmanesh, A. and Pakravish, Y. (2007) Szeged Index of HAC5C6C7 [k, p] Nanotube. Journal of Applied Sciences, 7, 3606-3617.

[31]   Ilic, A. Note on the Harmonic Index of a Graph, 1204.3313v1.

[32]   Randic, M. (2003) Chemical Graph Theory-Facts and Fiction. Indian Journal of Chemistry A, 42, 1207-1218.

[33]   Raut, N.K. and Ipper, S.N. (2015) Computing Some Topological Indices of Nanotubes. International Journal of Scientific and Research Publications, 5, 1-2.
http://www.ijsrp.org/research-paper-0815/ijsrp-p4454.pdf

[34]   Shehnaz, A. and Imran, M. (2016) On Molecular Topological Properties of Benzenoid Structures. Canadian Journal of Chemistry, 94, 687-698. https://doi.org/10.1139/cjc-2016-0032

[35]   Xing, R., Zhou, B. and Trinajstic, N. (2001) Sum-Connectivity Index of Molecular Trees. Journal of Mathematical Chemistry, 47, 583-591. https://doi.org/10.1007/s10910-010-9693-3

[36]   Zhong, L. and Xu, K. (2014) Inequalities between Vertex Degree Based Topological Indices. MATCH Communications in Mathematical and in Computer Chemistry, 71, 627-642.

[37]   Zhou, B. and Trinajstic, N. (2010) On General Sum-Connectivity Index. Journal of Mathematical Chemistry, 47, 210-218. https://doi.org/10.1007/s10910-009-9542-4

[38]   Zhou, B. and Gutman, I. (2005) Further Properties of Zagreb Indices. MATCH Communications in Mathematical and in Computer Chemistry, 54, 233-239.

[39]   Zhou, B. and Trinajstic, N. (2010) Minimum General Sum-Connectivity Index of Unicyclic Graphs. Journal of Mathematical Chemistry, 48, 697-703. https://doi.org/10.1007/s10910-010-9702-6

[40]   Baca, M., Horváthová, J., Mokrisová, M. and Suhányiova, A. (2015) On Topological Indices of Fullerenes. Applied Mathematics and Computation, 251, 154-161.
https://doi.org/10.1016/j.amc.2014.11.069

 
 
Top