JBM  Vol.5 No.10 , October 2017
Gemcitabine and Doxorubicin Combination Enhance the Cytotoxic Effect to Pancreatic Cancer Cells BxPC3 and PANC1 through UMP/CMP Kinase 1
Abstract: Background: Gemcitabine is a deoxycytidine analog, which is used as first-line agent for pancreatic cancer therapy, and its efficacy relied on its intracellular conversion to active triphosphate form. However, administration with gemcitabine still has limited effect on the overall survival of patients with pancreatic cancer. Objective: We aimed to study the combination effect of gemcitabine and doxorubicin to pancreatic cancer cells BxPC3 and PANC1, and unveil the mechanism. Methods: The study was performed in pancreatic cancer cells PANC1 and BxPC3, the contribution of UMP/CMP kinase 1 (CMPK1) to gemcitabine in PANC1 and BxPC3 cells was measured by transfection of CMPK1 plasmid or CMPK1 siRNA treatment to adjust the expression of CMPK1 in the cells; then analyzed the cell vitality and migration after treated with 1% IC50 of doxorubicin and gemcitabine or only with gemcitabine; the activity of CMPK1 and the effect of doxorubicin to the reaction was measured by HPLC assay in vitro; at last, docking analysis by computer was used to calculate the possible interaction sites of CMPK1 to DOX. Results: The sensitivity of PANC1 and BxPC3 cells to gemcitabine was improved when increasing the expression of CMPK1, and decreased when knockout CMPK1 by CMPK1 siRNA in BxPC3 cells; when combined with doxorubicin, the sensitivity of PANC1 and BxPC3 cells to gemcitabine also increased, and the cells migration reduced; we further found out that by adding 10 μM doxorubicin, the catalyzing activity of CMPK1 elevated about 2 times in vitro; the docking result showed that the association of CMPK1 to DOX was mainly by hydrogen bond and ionic interaction. Conclusion: CMPK1 can catalyze gemcitabine to its active form within the cells so that the sensitivity of the cells to gemcitabine elevated, and doxorubicin may enhance the cytotoxic effect to pancreatic cancer by up-regulate the activity of CMPK1, the combination of these deoxycytidine analogs with DOX might exert better efficacy.
Cite this paper: Chen, S. , Wang, X. , Ye, X. and Jin, J. (2017) Gemcitabine and Doxorubicin Combination Enhance the Cytotoxic Effect to Pancreatic Cancer Cells BxPC3 and PANC1 through UMP/CMP Kinase 1. Journal of Biosciences and Medicines, 5, 64-74. doi: 10.4236/jbm.2017.510007.

[1]   Réjiba, S., Bigand, C., Parmentier, C. and Hajri, A. (2009) Gemcitabine-Based Chemogene Therapy for Pancreatic Cancer Using Ad-dCK::UMK GDEPT and TS/RR siRNA Strategies. Neoplasia, 11, 637-650.

[2]   Goral, V. (2015) Pancreatic Cancer: Pathogenesis and Diagnosis. Asian Pacific Journal of Cancer Prevention, 16, 5619-5624.

[3]   Inman, K.S., Francis, A.A. and Murray, N.R. (2014) Complex Role for the Immune System in Initiation and Progression of Pancreatic Cancer. World Journal of Gastroenterology, 20, 11160-11181.

[4]   Ilic, M. and Ilic, I. (2016) Epidemiology of Pancreatic Cancer. World Journal of Gastroenterology, 22, 9694-9705.

[5]   Kollmannsberger, C., Peters, H.D. and Fink, U. (1998) Chemotherapy in Advanced Pancreatic Adenocarcinoma. Cancer Treatment Reviews, 24, 133-156.

[6]   de Sousa Cavalcante, L. and Monteiro, G. (2014) Gemcitabine: Metabolism and Molecular Mechanisms of Action, Sensitivity and Chemoresistance in Pancreatic Cancer. European Journal of Pharmacology, 741, 8-16.

[7]   Muggia, F., Diaz, I. and Peters, G.J. (2012) Nucleoside and Nucleobase Analogs in Cancer Treatment: Not Only Sapacitabine, But Also Gemcitabine. Expert Opinion on Investigational Drugs, 21, 403-408.

[8]   Hsu, C.H., Liou, J.Y., Dutschman, G.E. and Cheng, Y.C. (2005) Phosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium. Molecular Pharmacology, 67, 806-814.

[9]   Ohmine, K., Kawaguchi, K., Ohtsuki, S., Motoi, F., Ohtsuka, H., Kamiie, J., Abe, T., Unno, M. and Terasaki, T. (2015) Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment. Molecular Pharmaceutics, 12, 3282-3291.

[10]   Segura-Pena, D., Sekulic, N., Ort, S., Konrad, M. and Lavie, A. (2004) Substrate-Induced Conformational Changes in Human UMP/CMP Kinase. The Journal of Biological Chemistry, 279, 33882-33889.

[11]   Liou, J.Y., Dutschman, G.E., Lam, W., Jiang, Z. and Cheng, Y.C. (2002) Characterization of Human UMP/CMP Kinase and Its Phosphorylation of D- and L-Form Deoxycytidine Analogue Monophosphates. Cancer Research, 62, 1624-1631.

[12]   Curbo, S., Amiri, M., Foroogh, F., Johansson, M. and Karlsson, A. (2003) The Drosophila Melanogaster UMP-CMP Kinase cDNA Encodes an N-Terminal Mitochondrial Import Signal. Biochemical and Biophysical Research Communications, 311, 440-445.

[13]   Liou, J.Y., Lai, H.R., Hsu, C.H., Chang, W.L., Hsieh, M.J., Huang, Y.C. and Cheng, Y.C. (2010) Modulation of Human UMP/CMP Kinase Affects Activation and Cellular Sensitivity of Deoxycytidine Analogs. Biochemical Pharmacology, 79, 381-388.

[14]   Humeniuk, R., Menon, L.G., Mishra, P.J., Gorlick, R., Sowers, R., Rode, W., Pizzorno, G., Cheng, Y.C., Kemeny, N., Bertino, J.R. and Banerjee, D. (2009) Decreased Levels of UMP Kinase as a Mechanism of Fluoropyrimidine Resistance. Molecular Cancer Therapeutics, 8, 1037-1044.

[15]   Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M, Look, M.P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., Jatkoe, T., Berns, E.M., Atkins, D. and Foekens, J.A. (2005) Gene-Expression Profiles to Predict Distant Metastasis of Lymph-Node-Negative Primary Breast Cancer. The Lancet, 365, 671-679.

[16]   Liu, N.Q., De Marchi, T., Timmermans, A., Trapman-Jansen, A.M., Foekens, R., Look, M.P., Smid, M., van Deurzen, C.H., Span, P.N., Sweep, F.C., Brask, J.B., Timmermans-Wielenga, V., Foekens, J.A., Martens, J.W. and Umar, A. (2016) Prognostic Significance of Nuclear Expression of UMP-CMP Kinase in Triple Negative Breast Cancer Patients. Scientific Reports, 6, Article No. 32027.

[17]   Carvalho, C., Santos, R.X., Cardoso, S., Correia, S., Oliveira, P.J, Santos, M.S. and Moreira, P.I. (2009) Doxorubicin: The Good, the Bad and the Ugly Effect. Current Medicinal Chemistry, 16, 3267-3285.

[18]   Coldwell, K.E., Cutts, S.M., Ognibene, T.J., Henderson, P.T. and Phillips, D.R. (2008) Detection of Adriamycin-DNA Adducts by Accelerator Mass Spectrometry at Clinically Relevant Adriamycin Concentrations. Nucleic Acids Research, 36, e100.

[19]   Swift, L.P., Rephaeli, A., Nudelman, A., Phillips, D.R. and Cutts, S.M. (2006) Doxorubicin-DNA Adducts Induce a Non-Topoisomerase II-Mediated Form of Cell Death. Cancer Research, 66, 4863-4871.

[20]   Chen, S., Wang, X., Ye, X., Ma, D., Chen, C., Cai, J., Fu, Y., Cheng, X., Chen, Y., Gong, X. and Jin, J. (2017) Identification of Human UMP/CMP Kinase 1 as Doxorubicin Binding Target using Protein Microarray. SLAS Discovery, 22, 1007-1015.

[21]   Zheng, R.R., Hu, W., Sui, C.G., Ma, N. and Jiang, Y.H. (2014) Effects of Doxorubicin and Gemcitabine on the Induction of Apoptosis in Breast Cancer Cells. Oncology Reports, 32, 2719-2725.

[22]   Numakura, K., Tsuchiya, N., Akihama, S., Inoue, T., Narita, S., Huang, M., Satoh, S. and Habuchi, T. (2014) Successful Mammalian Target of Rapamycin Inhibitor Maintenance Therapy Following Induction Chemotherapy with Gemcitabine and Doxorubicin for Metastatic Sarcomatoid Renal Cell Carcinoma. Oncology Letters, 8, 464-466.