Back
 JIS  Vol.8 No.4 , October 2017
A Dynamic Social Network Data Publishing Algorithm Based on Differential Privacy
Abstract:
Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy information. The direct release of social network data will cause the disclosure of privacy information. Aiming at the dynamic characteristics of social network data release, a new dynamic social network data publishing method based on differential privacy was proposed. This method was consistent with differential privacy. It is named DDPA (Dynamic Differential Privacy Algorithm). DDPA algorithm is an improvement of privacy protection algorithm in static social network data publishing. DDPA adds noise which follows Laplace to network edge weights. DDPA identifies the edge weight information that changes as the number of iterations increases, adding the privacy protection budget. Through experiments on real data sets, the results show that the DDPA algorithm satisfies the user’s privacy requirement in social network. DDPA reduces the execution time brought by iterations and reduces the information loss rate of graph structure.
Cite this paper: Liu, Z. , Dong, Y. , Zhao, X. and Zhang, B. (2017) A Dynamic Social Network Data Publishing Algorithm Based on Differential Privacy. Journal of Information Security, 8, 328-338. doi: 10.4236/jis.2017.84021.
References

[1]   Liu, K. and Terzi, E. (2008) Towards Identity Anonymization on Graphs. ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, June 2008, Vancouver, BC, Canada, 93-106.

[2]   Lan, L.H. and Ju, S.H. (2015) Privacy Preserving Based on Differential Privacy for Weighted Social Networks. Journal on Communications, 36, 145-159.

[3]   Zhang, W., Cang, J.Y., Wang, X.R., et al. (2016) Differentially Private Network Data Publishing via Hierarchical Random Graph. Journal of Nanjing University of Posts and Telecommunication (Natural Science Edition), 36, 23-32.

[4]   Chen, C.L., Xiong, J., Chen, L., et al. (2016) Personalized Privacy Protection in Dynamic Social Network Data Publication. Journal of Nanjing University of Posts and Telecommunication (Natural Science Edition), 36, 74-81.

[5]   Ying, X. and Wu, X. (2008) Randomizing Social Networks: a Spectrum Preserving Approach. Siam International Conference on Data Mining, SDM 2008, 24-26 April 2008, Atlanta, Georgia, USA, DBLP, 739-750.

[6]   Bhagat, S., Cormode, G., et al. (2010) Privacy in Dynamic Social Networks. International Conference on World Wide Web, WWW 2010, April 2010, Raleigh, North Carolina, USA, DBLP, 1059-1060.

[7]   Bhagat, S., Cormode, G., et al. (2010) Prediction Promotes Privacy in Dynamic Social Networks. Proc of the 3rd Conference on Online Social Networks, CA: USENIX Association, 2010, 6.

[8]   Cheng, J., Fu, W.C., Liu, J. (2010) K-Isomorphism, Privacy Preserving Network Publication against Structural Attacks. ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, June 2010, Indianapolis, Indiana, USA, DBLP, 459-470.

[9]   Karwa, V., Smith, A., et al. (2014) Private Analysis of Graph Structure. ACM Transactions on Database Systems, 39, 1146-1157.
https://doi.org/10.1145/2611523

[10]   Chen, S. and Zhou, S. (2013) Recursive Mechanism: Towards Node Differential Privacy and Unrestricted Joins. Proc of the International Conference on Management of Data, 2013, 653-664.

[11]   Chen, R., Fung, B.C.M., Yu, P.S., et al. (2014) Correlated Network Data Publication via Differential Privacy. The VLDB Journal, 23, 653-676.
https://doi.org/10.1007/s00778-013-0344-8

[12]   Guo, C.H., Wang, B., Zhu, H.J., et al. (2016) Incremental Dynamic Social Network Anonymity Technology. Journal of Computer Research and Development, 53, 1352-1364.

[13]   Liu, Z.P., Dong, Y.W., et al. MDPA: Differential Privacy Network Data Publishing Based on MCL. Journal of Zhengzhou University, In Press.

[14]   Knuth, D.E. (1993) The Stanford GraphBase: A Platform for Combinatorial Computting. Addison-Wesley, Reading, MA.

 
 
Top