SCD  Vol.1 No.3 , October 2011
Alkaline phosphatase-positive cells isolated from human hearts have mesenchymal stem cell characteristics
ABSTRACT
Tissue-specific resident cells have been identified as a promising population of progenitor cells for cell-based therapies. We describe here the isolation from adult human hearts of tissue nonspecific alkaline phosphatase-positive cells (ALPL+ cells) with mesenchymal stem cell (MSC) characteristics. Samples from 24 adult cadaveric donors were obtained from a valve bank. Mean total ischemia time was 21.5 ± 9.1 hours. The success rate for the isolation of human heart-derived cells by the explant culture technique was 70% for the right auricle (14 of 20 trials) and 33% for the right ventricle (7 of 21 trials). The total auricle-derived cell population (TAD) was used for the purification of ALPL+ cells. TAD and ALPL+ cells expressed markers for MSC and pericytes. TAD cells and ALPL+ cells differentiated into adipocytes, osteoblasts and chondroblasts, and ALPL+ cells expressed markers of these three lineages more strongly than TAD cells, as shown by RT-PCR. This population therefore has a greater potential for differentiation into mesechymal lineages than TAD cells. Both cell populations express some markers of cardiac progenitors, such as GATA4, CD117 and VEGF. ALPL+ cells expressed troponin T and ABCG2, which are also markers of the cardiac lineage. Heart samples from tissue banks could be considered as sources of MSC with putative commitment towards cardiac lineages, even after prolonged ischemia times.

Cite this paper
nullAguiar, A. , Kuligovski, C. , Costa, M. , Stimamiglio, M. , Rebelatto, C. , Senegaglia, A. , Brofman, P. , Dallagiovanna, B. , Goldenberg, S. and Correa, A. (2011) Alkaline phosphatase-positive cells isolated from human hearts have mesenchymal stem cell characteristics. Stem Cell Discovery, 1, 71-80. doi: 10.4236/scd.2011.13008.
References
[1]   Gimble, J. and Guilak, F. (2003) Differentiation potential of adipose derived adult stem (ADAS) cells. Current Topics in Developmental Biology, 58, 137-160. doi:10.1016/S0070-2153(03)58005-X

[2]   Rebelatto, C., et al. (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Experimental Biology and Medicine, 233, 901-913. doi:10.3181/0712-RM-356

[3]   Makino, S., et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103, 697-705. doi:10.1172/JCI5298

[4]   Tomita, Y., et al. (2007) Application of mesenchymal stem cell-derived cardiomyocytes as bio-pacemakers: Current status and problems to be solved. Medical and Biological Engineering & Computing, 45, 209-220. doi:10.1007/s11517-007-0163-4

[5]   Toma, C., Pittenger, M., Cahill, K., Byrne, B. and Kessler, P. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93-98. doi:10.1161/hc0102.101442

[6]   Pittenger, M., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147. doi:10.1126/science.284.5411.143

[7]   Zuk, P., et al. (2002) Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279-4295. doi:10.1091/mbc.E02-02-0105

[8]   Rogers, I. and Casper, R. (2004) Umbilical cord blood stem cells. Best Practice and Research Clinical Obstetrics and genecology, 18, 893-908. doi:10.1016/j.bpobgyn.2004.06.004

[9]   Beltrami, A., et al. (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110, 3438-3446. doi:10.1182/blood-2006-11-055566

[10]   Crisan, M., et al. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301-313. doi:10.1016/j.stem.2008.07.003

[11]   Dominici, M., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315-317. doi:10.1080/14653240600855905

[12]   Battula, V., et al. (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94, 173-184. doi:10.3324/haematol.13740

[13]   Sobiesiak, M., et al. (2009) The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells and Development, 19, 669-677. doi:10.1089/scd.2009.0290

[14]   Mornet, E., et al. (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. Journal of Biological Chemistry, 276, 31171-31178. doi:10.1074/jbc.M102788200

[15]   O'Connor, M., et al. (2008) Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 26, 1109-1116. doi:10.1634/stemcells.2007-0801

[16]   Adewumi, O. et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 25, 803-816. doi:10.1038/nbt1318

[17]   Langer, D., Ikehara, Y., Takebayashi, H., Hawkes, R. and Zimmermann, H. (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohy-drolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience, 150, 863-879. doi:10.1016/j.neuroscience.2007.07.064

[18]   Dellavalle, A., et al. (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255-267. doi:10.1038/ncb1542

[19]   Schwab, K. and Gargett, C. (2008) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Human Reproduction, 22, 2903-2911. doi:10.1093/humrep/dem265

[20]   Crisan, M., Corselli, M., Chen, C.W. and Péault, B. (2011) Multilineage stem cells in the adult: A perivascular legacy? Organogenesis, 7, 101-104. doi:10.4161/org.7.2.16150

[21]   Chen, Z., Evans, W., Pflugfelder, S. and Li, D. (2006) Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells, 24, 1265-1273. doi:10.1634/stemcells.2005-0363

[22]   Yoon, B., et al. (2006) Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74, 149-159. doi:10.1111/j.1432-0436.2006.00063.x

[23]   Schittini, A., et al. (2010) Human cardiac explant-conditioned medium: Soluble factors and cardiomyogenic effect on mesenchymal stem cells. Experimental Biology and Medicine, 235, 1015-1024. doi:10.1258/ebm.2010.010003

[24]   Shigunov, P., et al. (2011) PUMILIO-2 I is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells. Stem Cells and Development, In Press. doi:10.1089/scd.2011.0143

[25]   Rebelatto, C., et al. (2009) Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents. Biochemical and Biophysical Research Communications, 378, 456-461. doi:10.1016/j.bbrc.2008.11.061

[26]   Kelley, C., Blumberg, H., Zon, L.I. and Evans, T. (1993) GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development, 118, 817-827.

[27]   Bearzi, C., et al. (2007) Human cardiac stem cells. Proceedings of the National Academy Science of the USA, 104, 14068-14073. doi:10.1073/pnas.0706760104

[28]   Formiga, F., et al. (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. Journal of Controlied Release, 147, 30-37. doi:10.1016/j.jconrel.2010.07.097

[29]   Hierlihy, A., Seale, P., Lobe, C., Rudnicki, M. and Megeney, L. (2002) The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239-243. doi:10.1016/S0014-5793(02)03477-4

[30]   Yamahara, K., et al. (2008) Heterogeneic nature of adult cardiac side population cells. Biochemical and Biophysical Research Communications, 371, 615-620. doi:10.1016/j.bbrc.2008.04.021

[31]   Beltrami, A., et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763-776. doi:10.1016/S0092-8674(03)00687-1

[32]   Galvez, B., et al. (2008) Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15, 1417-1428. doi:10.1038/cdd.2008.75

[33]   Messina, E., et al. (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911-921. doi:10.1161/01.RES.0000147315.71699.51

[34]   Gálvez, B., et al. (2009) Human cardiac mesoangioblasts isolated from hypertrophic cardio-myopathies are greatly reduced in proliferation and differentiation potency. Cardiovascular Research, 83, 707-716. doi:10.1093/cvr/cvp159

[35]   Bollini, S., Smart, N. and Riley, P. (2010) Resident cardiac progenitor cells: At the heart of regeneration. Journal of Molecular and Cellular Cardiology, 50, 296-303. doi:10.1016/j.yjmcc.2010.07.006

[36]   Becerra, J., Santos-Ruiz, L., Andrades, J.A. and Marí-Beffa, M. (2011) The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Reviews, 7, 248-255. doi:10.1007/s12015-010-9195-5

[37]   Armiger, L.C., Fitzgerald, S., Vanderwee, M.A., Gavin, J.B. and Herdson, P.B. (1981) The effects of altered cation balance on the fine structure of hypoxic myocardial cells. Pathology, 13, 449-461. doi:10.3109/00313028109059063

[38]   Armiger, L.C., Seelye, R.N., Morrison, M.A. and Holliss, D.G. (1984) Comparative biochemistry and fine structure of atrial and ventricular myocardium during autolysis in vitro. Basic Research in Cardiology, 79, 218-229. doi:10.1007/BF01908308

[39]   Riekstina, U., et al. (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Reviews, 5, 378-386. doi:10.1007/s12015-009-9094-9

[40]   Lindner, H., et al. (1998) Loss of myocardial capillary endothelial-cell alkaline phosphatase (ALP) activity in primary endothelial cell culture. Cell and Tissue Research, 291, 497-505. doi:10.1007/s004410051019

[41]   Pasquinelli, G., et al. (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25, 1627-1634. doi:10.1634/stemcells.2006-0731

 
 
Top