Back
 JAMP  Vol.5 No.9 , September 2017
Non-Scattering of the Solution of the Nonlinear Schrödinger Equation on the Torus
Abstract:
In this article, we will show non-scattering of the solution of the nonlinear Schrodinger equation on the torus. The result extends the result of Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. for the cubic nonlinear Schr?dinger equation on 2-dimensional torus.
Cite this paper: Cheng, X. and Li, Q. (2017) Non-Scattering of the Solution of the Nonlinear Schrödinger Equation on the Torus. Journal of Applied Mathematics and Physics, 5, 1917-1922. doi: 10.4236/jamp.2017.59162.
References

[1]   Bourgain, J. (1999) Global Well-Posedness of Defocusing 3D Critical NLS in the Radial Case. J. Amer. Math. Soc., 12, 145-171. https://doi.org/10.1090/S0894-0347-99-00283-0

[2]   Cazenave, T. (2003) Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI.

[3]   Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2008) Global Well-Posedness and Scattering for the Energy-Critical Nonlinear Schrödinger Equation in R^3, Ann. of Math., 167, 767-865. https://doi.org/10.4007/annals.2008.167.767

[4]   Tao, T. (2006) Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. American Mathematical Society, Providence, RI. https://doi.org/10.1090/cbms/106

[5]   Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2010) Transfer of Energy to High Frequencies in the Cubic Defocusing Nonlinear Schrödinger Equation. Invent. Math, 181, 39-113. https://doi.org/10.1007/s00222-010-0242-2

 
 
Top