JEP  Vol.2 No.8 , October 2011
Development of the Sea Urchin Arbacia Punctulata in the Presence of the Environmental Toxin Sodium Hypochlorite
Abstract: Sodium hypochlorite (NaOCl) or bleach, found in effluent from wastewater treatment plants, can act as an environmental toxin. The sea urchin Arbacia punctulata is a common subject of embryological toxicity tests due to its sensitivity to environmental pollutants. Using concentrations of NaOCl that mimic those found in treated wastewater (0.11 ppm, 0.06 ppm, and 0.03 ppm) we observed minimal affects on early larval development, though most larvae took longer to develop at higher NaOCl concentration. There was a significant difference in the percentage of non-normal plutei based on concentration (P = 0.038) and significant interaction between the percent of each morphology and NaOCl concentration (P = 0.0027). The most significant change in non-normal plutei was in the retarded (shortened skeletal rods) malformation which increased in frequency with NaOCl concentration (P = 0.001). There was a significant reduction in skeletal length in both normal and retarded plutei (P < 0.05) as NaOCl increased.
Cite this paper: nullM. Rock, E. Davis-Berg and B. Wilson, "Development of the Sea Urchin Arbacia Punctulata in the Presence of the Environmental Toxin Sodium Hypochlorite," Journal of Environmental Protection, Vol. 2 No. 8, 2011, pp. 1127-1133. doi: 10.4236/jep.2011.28131.

[1]   P. A. Dinnel, J. M. Link, Q. J. Stober, M. W. Letourneau and W. E. Roberts, “Comparitive Sensitivity of Sea Urchin Sperm Bioassays to Metals and Pesticides,” Archive of Environmental Contamination Toxicology, Vol. 18, No. 5, 1989, pp. 748-755.doi:10.1007/BF01225012

[2]   A. V. Ghiradini, A. A. Novelli, C. Losso and P. F. Ghetti, “Sea Urchin Toxicity Bioassays for Sediment Quality Assessment in the Lagoon of Venice (Italy),” Chem. and Ecol, Vol. 19, No. 2-3, 2003, pp. 99-111. doi:10.1080/0275754031000119870

[3]   A.V. Ghiradini, A.A. Novelli, C. Losso and P.F. Ghetti, “Sperm Cell and Embryo Toxicity Tests Using the Sea Urchin Paracentrotus Lividus (LmK)”, In: K.O. Gary, Ed., Techniques in Aquatic Toxicology, Taylor & Francis, New York., 2005. pp. 147-168. doi:10.1201/9780203501597.ch8

[4]   D. Nacci, E. Jackin and R. Walsh, “Comparative Evaluation of Three Rapid Marine Toxicity Tests: Sea Urchin Early Embryo Growth Test, Sea Urchin Sperm Cell Toxicity Test and Microtox,” Environmental Toxicology and Chemistry, Vol. 5, No. 6, 1986, pp. 521-525. doi:10.1002/etc.5620050603

[5]   G. Pagano, et al., “The Sea Urchin: Bioassay for the Assessment of Damage from Environmental Contaminants,” In: J. Cairns Jr., Ed., Community Toxicology Testing, ASTM, Philadelphia, 1986. pp. 66-92. doi:10.1520/STP23050S

[6]   R. T. Hinegardner, “Growth and Development of the Laboratory Cultured Sea Urchin,” Biological Bulletin, Vol. 137, 1969, pp. 465-475.

[7]   EPA, “Purple Urchin, Strongylocentrotus Purpuratus and Sand Dollar, Dendraster Excentricus Larval Development Test Method,” In: G. A. Chapman, D. L. Denton and J. M. Lazorchak, Eds., Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms EPA/600/ R-95-136, U.S. Environmental Protection Agency, Cincinnati, 1995.

[8]   R. T. Hinegardner, “Care and Handling of Sea Urchin Eggs, Embryos and Adults (Principally North American species),” In: G. Czihak, Ed., The Sea Urchin Embryo: Biochemistry and Morphogenesis, Springer-Verglag, New York, 1975. pp. 10-25.

[9]   G. Radenac, D. Fichet and P. Miramand, “Bioaccumulation and Toxicity of Four Dissolved Metals in Paracentrotus Lividus Sea-Urchin Embryo,” Marine Environmental Research, Vol. 51, No. 2, 2001, pp. 151-166. doi:10.1016/S0141-1136(00)00092-1

[10]   G. Rosen, I. Rivera-Duarte, D.B. Chadwick, A. Ryan, R.C. Santore and P.R. Paquin, “Critical tissue copper residues for marine bivalve (Mytilus galloprovincialis) and echinoderm (Strongylocentrotus purpuratus) embryonic development: conceptual, regulatory and environmental implications”. Marine Environmental Research, Vol. 66, 2008, pp. 327-336. doi:10.1016/j.marenvres.2008.05.006

[11]   G. M. Mateyko, “Developmental Modifications in Arbacia Punctulata by Various Metabolic Substances,” Biological Bulletin, Vol. 133, No. 1, 1967, pp. 184-228. doi:10.2307/1539802

[12]   M. G. Marin, V. Moshino, F. Cima and C. Celli, “Embryotoxicity of Butyltin Compounds to the Sea Urchin Paracentrotus Lividus,” Marine Environmental Research, Vol. 50, 2000, pp. 231-235. doi:10.1016/S0141-1136(00)00072-6

[13]   J. Runnstrom, “An Analysis of the Action of Lithium of Sea Urchin Development,” Biological Bulletin, Vol. 68, No. 3, 1935, pp. 378-384. doi:10.2307/1537560

[14]   J. V. Goldstone, et al., “The Chemical Defensome: Environmental Sensing and Response Genes in the Strongylocentrotus Purpuratus Genome,” Developmental Biology, Vol. 300, No. 1, 2006, pp. 366-384. doi:10.1016/j.ydbio.2006.08.066

[15]   J. E. Hose, “Potential Uses of Sea Urchin Embryos for Identifying Toxic Chemicals: Description of a Bioassay Incorporating Cytologic, Cytogenetic and Embryologic Endpoints,” Journal of Applied Toxicology, Vol. 5, No. 4, 1985, pp. 245-254. doi:10.1002/jat.2550050406

[16]   M. A. Lewis, C. B. Daniels, J. C. Moore and T. Chen, “Potential Genotoxicity of Wastewater-Contaminated Pore Waters with Comparison to Sediment Toxicity and Macrobenthic Community Composition,” Environmental Toxicology, Vol. 17, No. 1, 2002, pp. 63-73. doi:10.1002/tox.10033

[17]   E. Emmanuel, G. Keck, J. Blanchard, P. Vermande and Y. Perrodin, “Toxicological Effects of Disinfections Using Sodium Hypochlorite on Aquatic Organisms and Its Contributions to AOX Formation in Hospital Wastewater,” Environment International, Vol. 30, 2004, pp. 891-900.

[18]   A. Buschini, P. Carboni, M. Furlini, P. Poli and C. Rossi, “Sodium Hypochlorite-, Chlorine Dioxide- and Paracetic Acid-Induced Genotoxicity Detected by the Comet Assay and Saccharomyces Cervisiae D76 Tests,” Mutagenesis, Vol. 19, No. 2, 2004, pp. 157-162. doi:10.1093/mutage/geh012

[19]   M. J. Kennish, “Practical Handbook of Estuarine and Marine Pollution,” CRC Press, New York, 1997.

[20]   D. Muchmore and D. Epel, “The Effects of Chlorination of Wastewater on Fertilization in Some Marine Invertebrates,” Marine Biology, Vol. 19, No. 2, 1973, pp. 93-95. doi:10.1007/BF00353579

[21]   Clorox Company, “Material Safety Data Sheet for Clorox Regular Bleach,” The Clorox Company, 2005.

[22]   N. Kobayashi and H. Okamura, “Effects of Heavy Metals on Sea Urchin Embryo Development: Tracing the Cause by the Effects,” Chemosphere, Vol. 55, No. 10, 2004, pp. 1403-1412. doi:10.1016/j.chemosphere.2003.11.052

[23]   T. K. Naidenko, E. N. Gakhova, V. P. Naidenko and B. N. Veprintsev, “Evaluation of the Viability of Sea Urchin Larvae after Cryopreservation of Embryos,” In: T. Yanagisawa, et al., Eds., Biology of the Echinodermata, Balke- ma, Rotterdam, 1990.

[24]   G. Pagano, A. Esposito, G. G. Giordano and H. B. E., “Embryotoxic and Teratogenic Effects of Styrene Derivatives on Sea Urchin Development,” Scandinavian Journal of Work, Environment & Health, Vol. 4, Suppl. 2, 1978, pp. 136-141.