MSA  Vol.2 No.10 , October 2011
Concentration of Bio-Ethanol through Cellulose Ester Membranes during Temperature-Difference Controlled Evapomeation
Author(s) Tadashi Uragami
ABSTRACT
To evaluate the high-performance of membrane materials in the concentration of an aqueous solution of dilute bioethanol under temperature-difference controlled evapomeation (TDEV), asymmetric porous cellulose nitrate (CN) and cellulose acetate (CA) membranes were prepared by a phase inversion method. In the concentration of dilute ethanol under TDEV, these membranes showed a high permeation rate and high ethanol/water selectivity. In membranes with almost the similar pore size, the ethanol/water selectivity was considerably higher for the CN membrane than the corresponding CA membrane. This result suggested that the affinity between the membrane material and the permeant is an important factor in the separation selectivity.

Cite this paper
nullT. Uragami, "Concentration of Bio-Ethanol through Cellulose Ester Membranes during Temperature-Difference Controlled Evapomeation," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1499-1506. doi: 10.4236/msa.2011.210202.
References
[1]   T. Uragami, T. Matsuda H. Okuno and T. Miyata, “Structure of Chemically Modified Chitosan Membranes and Their Characteristics of Permeation and Separation of Aqueous Ethanol Solutions,” Journal of Membrane Science, Vol. 88, No. 2-3, 1994, pp. 243-251. doi:10.1016/0376-7388(94)87010-1

[2]   T. Uragami, S. Kato and T. Miyata, “Structure of N-Alkyl Chitosan Membranes on Water-Permselectivity for Aqueous Ethanol Solution,” Journal of Membrane Science, Vol. 124, No. 2, 1997, pp. 203-211.

[3]   T. Uragami, M. Takuno and T. Miyata, “Evapomeation Characteristics of Cross-linked Quaternized CHITOSAN Membranes for the Separation of an Ethanol/Water Azeo- trope,” Macromolecular Chemistry and Physics, Vol. 203, No. 9, 2002, pp. 1162-1170. doi:10.1002/1521-3935(200206)203:9<1162::AID-MACP1162>3.0.CO;2-Q

[4]   T. Uragami,Y. Tanaka and S. Nishida, “Permeation and Separation under High Temperature and High Pressure for Ethanol/water Vapors through Cross-Linked Quarter- nized Chitosan Composite Membranes,” Desalination, Vol. 147, No. 1-3, 2002, pp. 449-454. doi:10.1016/S0011-9164(02)00642-2

[5]   T. Uragami, S. Yamamoto and T. Miyata, “Dehydration from Alcohols by Polyion Complex Cross-Linked Chito- san Composite Membranes during Evapomeation,” Bio- macromolecules, Vol. 4, No. 1, 2003, pp. 137-144. doi:10.1021/bm025642o

[6]   T. Uragami, T. Katayama, T. Miyata H. Tamura, T. Shi- raiwa and A. Higuchi, “Dehydration of an Ethanol/ water Azeotrope by Novel Organic-Inorganic Hybrid Membranes Based on Quaternized Chitosan and Tetraethoxysilane,” Biomocrmolecules, Vol. 5, No. 4, 2004, pp. 1567-1574. doi:10.102/bm0498880

[7]   T. Uragami and T. Morikawa, “Permeation and Separation Characteristics for Aqueous Alcoholic Solutions by Evapomeation and Pervaporation through Polystyrene Membranes,” Makromolekule Chemie, Rapid Communication, Vol. 190, No. 2, 1989, pp. 399-404.

[8]   T. Uragami and T. Morikawa, “Permeation and Separation Characteristics of Alcohol-Water Mixtures through Poly(Dimethyl Siloxane) Membrane by Pervaporation and Evapomeation,” Journal of Applied Polymer Science, Vol. 44, No. 11, 1992, pp. 2009-2018. doi:10.1002/app.1992.070441116

[9]   T. Uragami and H. Shinomiya, “Concentration of Aqueous Alcoholic Solutions through a Modified Silicone Rubber Membranes by Pervaporation and Evapomeation,” Makromoekulare Chemie, Vol. 192, No. 10, 1991, pp. 2293-2305. doi:10.1002/macp.1991.021921009

[10]   T. Uragami, M. Saito and K. Takigawa, “Comparison of Permeation and Separation Characteristics for Aqueous Alcoholic Solutions by Pervaporation and New Evapo- meation Methods through Chitosan Membranes,” Makro- molekulare Chemie, Rapid Communication, Vol. 9, No. 5, 1988, pp. 361-365. doi:10.1002/marc.1988.030090513

[11]   T. Uragami and M. Saito, “Analysis of Permeation and Separation Characteristics and New Technique for Separation of Aqueous Alcoholic Solutions through Alginic Acid Membranes,” Separation Science Technology, Vol. 24, No. 7-8, 1989, pp. 541-554.

[12]   T. Uragami, “Separation of Aqueous Organic Liquid So- lutions through Polymer Membranes,” Desalination, Vol. 90, No. 1-3, 1993, pp. 325-334. doi:10.1016/0011-9164(93)80184-O

[13]   T. Uragami, “Concentration of Aqueous Ethanol Solu- tions by Porous Poly(Dimethylsiloxane) Membranes dur- ing Temperature-Difference Controlling Evapomeation,” Desalination, Vol. 193, No. 1-3, 2006, pp. 335-343. doi:10.1016/j.desal.2005.09.026

[14]   T. Uragami, “Structural Design of Polymer Membranes for Concentration of Bio-Ethanol,” Polymer Journal, Vol. 40, No. 6, 2008, pp. 485-494. doi:10.1295/polymj.PJ2008015

[15]   N. I??klan and O. ?anl?, “Permeation and Separation Cha- racteristics of Acetic Acid/Water Mixtures through Poly (Vinyl Alcohol-G-Itaconic Acid) Membranes by Perva- poration, Evapomeation, and Temperature-Difference Eva- pomeation,” Journal Applied Polymer Science, Vol. 93, No. 5, 2004, pp. 2322-2333. doi:10.1002/app.20710

[16]   N. I??klan and O. ?anl?, “Permeation and Separation Characteristics of Acetic Acid-Water Mixtures through Poly(Vinyl Alcohol)/Malic Acid Membranes by Evapo- meation and Temperature Difference Controlled Evapo- meation,” Separation Science and Technology, Vol. 40, No. 5, 2005, pp. 1077-1082.

[17]   N. Isiklan and O. Sanli, “Permeation and Separation Cha- racteristics of Acetic Acid-Water Mixtures through Poly (Vinyl Alcohol)/Malic Acid Membranes by Evapomeation and Temperature Difference Controlled Evapomeation,” Separation Science and Technology, Vol. 40, No. 5, 2005, pp. 1083-1101. doi:10.1081/SS-200048179

[18]   G. Asman and O. ?anl?, “Separation of Acetic Acid-Wa- ter Mixtures through Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Alloy Membranes by Using Evapomeation and Temperature Difference Evapomeation Methods,” Separation Science and Technology, Vol. 41, No. 6, 2006, pp. 1193-1209. doi:10.1080/00497870600636928

[19]   G. Asman and O. ?anl?, “Using Poly(Vinyl Alcohol-G-4- Vinyl Pyridine) Membranes by Pervaporation and Temperature Difference Evapomeation Techniques,” Journal Applied Polymer Science, Vol. 100, No. 2, 2006, pp. 1385- 1394. doi:10.1002/app.23676

[20]   G. Asman and O. ?anl?, “Separation Characteristics of Acetic Acid-Water Mixtures by Using Poly(Vinyl Alcohol-G-4-Vinyl Pyridine) Membranes by Pervaporation and Temperature Difference Evapomeation Techniques,” Journal of Applied Polymer Science, Vol. 100, No. 3, 2006, pp. 2030-2039. doi:10.1002/app.22613

[21]   S. E. Kondolot and O. ?anl?, “Separation Characteristics of Dimethylformamide/Water Mixtures through Alginate Membranes by Pervaporation, Vapor Permeation and Va- por Permeation with Temperature Difference Methods,” Separation Science and Technology, Vol. 41, No. 4, 2006, pp. 627-646. doi:10.1080/01496390500526789

[22]   R. E. Kesting, “Synthetic Polymer Membranes,” McGraw- Hill, Boston, 1971.

[23]   R. E. Kesting, “Synthetic Polymer Membranes, A Structural Perspective,” 2nd Edition, John Wiley & Sons, New York, 1985.

[24]   H. Yasuda, C. E. Lamazeand and A. Peterkin, “Diffusive and Hydraulic Permeabilities of Water in Water-Swollen Polymer Membranes,” Journal of Polymer Science, Part A-2, Vol. 5, No. 6, 1971, pp. 1117-1131.

[25]   U. Mertien, “Desalination by Reverse Osmosis,” MIT Press, Cambridge, 1966. pp. 22.

[26]   T. Uragami, K. Maekawa and M. Sugihara, “Permeabilities of Alcohols and Hydrocarbons through Nylon 12 Membranes,” Angewante Makromolekulare Chemie, Vol. 87, No. 1, 1980, pp. 175-193. doi:10.1002/apmc.1980.050870113

[27]   K. Nakamae, T. Miyata N. Ootsuki, M. Okumura and K. Kinomura, “Surface Characterizations of Copolymer Films with Pendant Monosaccharides,” Macromolecular Chemistry and Physics, Vol. 195, No. 6, 1994, pp. 1953-1963. doi:10.1002/macp.1994.021950606

[28]   D. K. Owens and R. C. Wendt, “Estimation of the Sur- face Free Energy of Polymers,” Journal of Applied Polmyer Science, Vol. 13, No. 8, 1969, pp. 742-1747. doi:10.1002/app.1969.070130815

[29]   S. M. Fowkes, “Determination of Interfacial Tensions, Contact Angles, and Dispersion Forces in Surfaces by Assuming Additivity of Intermolecular Interactions in Surfaces,” Journal of Physical. Chemistry, Vol. 66, No. 2, 1962, pp. 382-386. doi:10.1021/j100808a524

[30]   S. M. Fowkes, “Additivity of Intermolecular Forces at Interfaces. I. Determination of the Contribution to Surface and Interfacial Tensions of Dispersion Forces in Various Liquids,” Journal of Physical Chemistry, Vol. 67, No. 12, 1963, pp. 2538-2541. doi:10.1021/j100806a008

[31]   M. A. Frommer and D. Lacent, “Freezing and Nonfreez- ing Water in Cellulose Acetate Membranes,” Journal of Applied Polymer Science, Vol. 16, No. 5, 1972, pp. 1295- 1303. doi:10.1002/app.1972.070160519

[32]   T. Uragami and K. Fujino and M. Sugihara, “Concentration of Aqueous Polymer Solutions Using Porous Cellulose Acetate Membranes,” Angewante Makromoekulare Chemie, Vol. 55, No. 1, 1976, pp. 29-42. doi:10.1002/apmc.1976.050550103

 
 
Top