OJFD  Vol.7 No.3 , September 2017
Numerical Modelling of Radiation-Convection Coupling of Greenhouse Using Underfloor Heating
Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants growth. Adopting underground heating to increase the temperature can effectively improve the yield of crops. The objective of our study was to model the heat transfer of greenhouse underfloor heating which is analyzed and simplified based on the FLUENT software by changing the several important factors that affect the temperature distribution: pipe diameter, pipe spacing, laying depth, supplied water temperature and flow rate, as boundary conditions to simulate the changes of the soil temperature field around the winter night environment. Researching the temperature distribution of the greenhouse, the soil surface and the plant root layer under the different parameters and the basic rules of the heating system are summarized. The results show that the water supply temperature, pipe spacing and diameter of the pipe has a greater impact on the ground and room temperature, and the laying depth has greater impact on the temperature uniformity of the ground, the velocity of water in pipe has little impact on the uniformity of ground temperature.
Cite this paper: Jia, Y. , Wang, C. , Zhang, C. and Li, W. (2017) Numerical Modelling of Radiation-Convection Coupling of Greenhouse Using Underfloor Heating. Open Journal of Fluid Dynamics, 7, 448-461. doi: 10.4236/ojfd.2017.73030.

[1]   Chen, Y. and Athienitis, A.K. (1998) Three-Dimensional Numerical Investigation of the Effect of Cover Materials on Heat Transfer in Floor Heating Systems. Ashrae Transactions, 104, 1350-1355.

[2]   Dragomir, F. and Dragomir, O.E. (2012) Improvement of Energy Consume from Hybrid Systems Integrating Renewable Energy Sources. Advanced Materials Research, 512-515, 1147-1150.

[3]   Arghira, N., Hawarah, L., Ploix, S. and Jacomino, M. (2012) Prediction of Appliances Energy Use in Smart Homes. Energy, 48, 128-134.

[4]   Stamatescu, G., Stamatescu, I., Arghira, N., Fagarasan, I. and Iliescu, S.S. (2014) Embedded Networked Monitoring and Control for Renewable Energy Storage Systems. International Conference on Development and Application Systems, Romania, 15-17 May 2014, 1-6.

[5]   Tong, Y., Kozai, T., Nishioka, N. and Ohyama, K. (2010) Greenhouse heating Using Heat Pumps with a High Coefficient of Performance (Cop). Biosystems Engineering, 106, 405-411.

[6]   Sase, S., Okushima, L. and Kacira, M. (2004) Optimization of Vent Configuration by Evaluating Greenhouse and Plant Canopy Ventilation Rates under Wind-Induced Ventilation. Transactions of the Asae, 47, 2059-2067.

[7]   Boulard, T. and Wang, S. (2002) Experimental and Numerical Studies on the Heterogeneity of Crop Transpiration in a Plastic Tunnel. Computers & Electronics in Agriculture, 34, 173-190.

[8]   Molina-Aiz, F.D., Valera, D.L. and álvarez, A.J. (2004) Measurement and Simulation of Climate inside Almeria-Type Greenhouses Using Computational Fluid Dynamics. Agricultural & Forest Meteorology, 125, 33-51.

[9]   Li, Y., Li, B., Li, Z. and Ding, T. (2004) CFD Simulation of a Naturally Ventilating Cooling Process for a Venlo Greenhouse in Summer. Journal of China Agricultural University, 9, 44-48.

[10]   Fatnassi, H., Boulard, T., Poncet, C. and Chave, M. (2006) Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics. Biosystems Engineering, 93, 301-312.

[11]   Rouboa, A. and Monteiro, E. (2007) Computational Fluid Dynamics Analysis of Greenhouse Microclimates by Heated Underground Tubes. Journal of Mechanical Science and Technology, 21, 2196-2204.

[12]   Izadi, M.J. and Makaremi, K. (2009) CFD Simulation of Temperature Distribution in a Room with Various under Floor Heating System Models. ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado, 2-6 August 2009, 2319-2329.

[13]   Chen, J., Xu, F., Yang, J. and Ai, Q. (2011) Optimized Design of Hot Air Pipe in Greenhouse Based on CFD Technique. International Conference on New Technology of Agricultural Engineering, IEEE, Zibo, 27-29 May 2011, 441-445.

[14]   Mezrhab, A., Elfarh, L., Naji, H. and Lemonnier, D. (2010) Computation of Surface Radiation and Natural Convection in a heated horticultural Greenhouse. Applied Energy, 87, 894-900.

[15]   Grigoriu, O.R., Voda, A., Arghira, N., Calofir, V. and Iliescu, S.S. (2015) Temperature Control of a Greenhouse Heated by Renewable Energy Sources. Aegean Conference on Electrical Machines and Power Electronics, Antalya, 2-4 September 2015, ACEMP.