JAMP  Vol.5 No.9 , September 2017
The Qualitative and Quantitative Methods of Kovalevskys Case
Abstract: The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical calculation by using Poincaré surface section is used to get the invariant tori for our problem.
Cite this paper: Fahmy El-Sabaa, F. , Mohamed, A. and Zakria, S. (2017) The Qualitative and Quantitative Methods of Kovalevskys Case. Journal of Applied Mathematics and Physics, 5, 1837-1854. doi: 10.4236/jamp.2017.59155.

[1]   Leimanis, E. (1965) The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer-Verlag, Berlin-Heidelberg, New York.

[2]   Kovalevskaya, S. (1889) Sur le probléme de la rotation d’un corps solide autour d’un point fixe. Acta Mathematica, 12, 77-232.

[3]   Golubev, V.V. (1953) Lectures on Integration of the Equations of Motion of Rigid Body about a Fixed Point. GITTL, Moscow.

[4]   Kozlov, V.V. (1983) Integrability and Non-Integrability in Hamiltonian Mechanics. Russian Mathematical Surveys, 38, 1-76.

[5]   El-Sabaa, F. (1983) Solution of the Equations of the Problem of Motion of a Heavy Rigid Body about a Fixed Point in the Kovaleveskaya Case Using θ-Function, Celestial Mechanics, 29, 249-253.

[6]   Poincaré, H. (1957) Les méthodes nouvelles de la mécanique céleste.

[7]   Fomenko, A.T. (1988) Integrability and Nonintegrability in Geometry and Mechanics. Kluwer Academic Publishers, Dordrecht.

[8]   Kozlov, V.V. (1976) Splitting of the Separatrices in the Perturbed Euler-Poinsot Problem. Moskovskii Universitet, Vestnik, Seriia I: Matematika, Mekhanika, 31, 99-104.

[9]   Henon, M. and Heiles, C. (1964) The Applicability of the Third Integral of Motion: Some Numerical Experiments. The Astronomical Journal, 69, 73.

[10]   Tabor, M. (1988) Chaos and Integrability in Nonlinear Dynamics. A Wiley-Interscience Publication, New York.