Back
 JEAS  Vol.7 No.3 , September 2017
Radio Pet Therapy of Healthy Wistar Rats with 64CuCl2 Labeled to 64Cu(AcAc)2 Supported in Functionalized TiO2 Nanoparticles
Abstract: In recent years Copper-64 in the chemical form of copper chloride ([64Cu]CuCl2) has been identified as a potential agent for PET imaging and radionuclide therapy. The aim of this research was to determine the biodistribution and the labeling of radio nanoparticle with 64CuCl2, the nanoparticles Cu(acac)2/F-TiO2 were mixed with 64CuCl2 (20-37 MBq), then the final solution was used to injected healthy Wistar rats to probe the absorption of nanoparticle inside tissue trough of the groups OH that are formed during the functionalization of the Cu(acac)2/F-TiO2. The “in vivo” evaluation after realize the images study in micro PET equipment, uptake of the radio-nanoparticle was observed in the digestive system in the healthy Wistar rats.
Cite this paper: López, T. , Manrique-Arias, J. , Ramírez, P. , Larraza, P. and Reinoso, F. (2017) Radio Pet Therapy of Healthy Wistar Rats with 64CuCl2 Labeled to 64Cu(AcAc)2 Supported in Functionalized TiO2 Nanoparticles. Journal of Encapsulation and Adsorption Sciences, 7, 121-126. doi: 10.4236/jeas.2017.73009.
References

[1]   Bryan, J.N., Jia, F., Mohsin, H., et al. (2011) Monoclonal Antibodies for Copper-64 PET Dosimetry and Radioimmunotherapy. Cancer Biology & Therapy, 11, 1001- 1007.
https://doi.org/10.4161/cbt.11.12.15528

[2]   Manrique-Arias, J.C. and Avila-Rodriguez M.A. (2014) A Simple and Efficient Method of Nickel Electrodeposition for the Cyclotron Production of Cu-64. Applied Radiation and Isotopes, 89, 37-41.
https://doi.org/10.1016/j.apradiso.2014.01.024

[3]   Manrique-Arias, J.C., Carrasco-Hernandez, J., Reyes, P.G. and Avila-Rodriguez, M.A. (2016) Biodistribution in Rats and Estimates of Doses to Humans from 64CuCl2, a Potential Theranostic Tracer. Applied Radiation and Isotopes, 115, 18-22.
https://doi.org/10.1016/j.apradiso.2016.05.030

[4]   McCarthy, D.W., Shefer, R.E., Klinkowstein, R.E., Bass, L.A., Margeneau, W.H., Cutler, C.S., et al. (1997) Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nuclear Medicine and Biology, 24, 35-43.
https://doi.org/10.1016/S0969-8051(96)00157-6

[5]   Obata, A., Kasamatsu, S., McCarthy, D.W., Welch, M.J., Saji, H., Yonekura, Y., et al. (2003) Production of Therapeutic Quantities of 64Cu Using a 12 MeV Cyclotron. Nuclear Medicine and Biology, 30, 535-539.
https://doi.org/10.1016/S0969-8051(03)00024-6

[6]   McCarthy, D.W., Bass, L.A., Cutler, P.D., Shefer, R.E., Klinkowstein, R.E., Herrero, P., et al. (1999) High Purity Production and Potential Applications of Copper-60 and Copper-61. Nuclear Medicine and Biology, 26, 351-358.
https://doi.org/10.1016/S0969-8051(98)00113-9

[7]   Zeisler, S.K., Pavan, R.A., Orzechowski, J., Langlois, R., Rodrigue, S. and van Lier, J.E. (2003) Production of 64Cu on the Sherbrooke TR-PET Cyclotron. Journal of Radioanalytical and Nuclear Chemistry, 257, 175-177.
https://doi.org/10.1023/A:1024782318219

[8]   Lawrence, P., Szajek, W., Meyer, P.P. and Eckelman, W.C. (2005) Semi-Remote Production of [64Cu]CuCl2 and Preparation of High Specific Activity [64Cu]Cu-ATSM for PET Studies. Radiochimica Acta, 93, 239-244.
https://doi.org/10.1524/ract.93.4.239.64070

[9]   Tsoumpas, C., Visvikis, D. and Loudos, G. (2016) Innovations in Small-Animal PET/MR Imaging Instrumentation. PET Clinics, 11, 105-118.
https://doi.org/10.1016/j.cpet.2015.10.005

[10]   Chen, W., Fu, L. and Chen, X. (2015) Improving Cell-Based Therapies by Nanomodification. Journal of Controlled Release, 219, 560-575.
https://doi.org/10.1016/j.jconrel.2015.09.054

[11]   Dearling, J.L.J., Voss, S.D., Dunning, P., Snay, E., Fahey, F., Smith, S.V., et al. (2011) Imaging Cancer Using PET—The Effect of the Bifunctional Chelator on the Biodistribution of a 64Cu-Labeled Antibody. Nuclear Medicine and Biology, 38, 29-38.

[12]   López, T., Figueras, F., Manjarrez, J., Bustos, J., Alvarez, M., Silvestre-Albero, J., et al. (2010) Catalytic Nanomedicine: A New Field in Antitumor Treatment using Supported Platinum Nanoparticles. In Vitro DNA Degradation and in Vivo Tests with C6 Animal Model on Wistar Rats. European Journal of Medicinal Chemistry, 45, 1982-1990.

[13]   Maldonado, C.R., Salassa, L., Gomez-Blanco, N. and Mareque-Rivas, J.C. (2013) Nano-Functionalization of Metal Complexes for Molecular Imaging and Anticancer Therapy. Coordination Chemistry Reviews, 257, 2668-2688.

[14]   López, T., Alvarez, M., González, R.D., Uddin, M.J., Bustos, J., Arroyo, S., et al. (2011) Synthesis, Characterization and in Vitro Cytotoxicity of Pt-TiO2 Nanoparticles. Adsorption, 17, 573-581.
https://doi.org/10.1007/s10450-011-9330-x

[15]   López, T., Ortiz-Islas, E., Guevara, P., Rodríguez-Reinoso, F., Gómez, E., Cuevas, J.L., et al. (2015) Release of Copper Complexes from a Nanostructured Sol-Gel Titania for Cancer Treatment. Journal of Materials Science, 50, 2410-2421.
https://doi.org/10.1007/s10853-014-8796-9

[16]   Anderson, C.J., Dehdashti, F., Cutler, P.D., Schwarz, S.W., Laforest, R., Bass, L.A., et al. (2001) 64Cu-TETA-Octreotide as a PET Imaging Agent for Patients with Neuroendocrine Tumors. The Journal of Nuclear Medicine, 42, 213-221.

[17]   Anderson, C.J. and Ferdani, A.R. (2009) Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. Cancer Biotheraphy and Radiopharmaceuticals, 24, 379-393.

 
 
Top