MSA  Vol.2 No.10 , October 2011
Structure and Bonding of Nanolayered Ternary Phosphides
ABSTRACT
We have studied the electronic structure and chemical bonding mechanism of nanolayered M2SbP with M = Ti, Zr and Hf using the full-relativistic of an all-electron full potential linearized augmented-plane-wave (FP-LAPW) method based on the density functional theory, within the local density approximation scheme for the exchange-correlation potential. Furthermore, we have to calculate the energy of formation for prove the existence of these compounds experimentally. Geometrical optimizations of the unit cell are in good agreement with the available theoretical and experimental data. The bulk modulus of M2SbP conserved as Ti is replaced with Zr, and increases by 8.7% as Ti is replaced with Hf, which can be understood on the basis of the increased number of valence electrons filling the p-d hybridized bonding states. The bonding is of covalentionic nature with the presence of metallic character. Analyzing the bonding in the binary MP, it can be concluded that this character is essentially conserved in M2SbP ternaries.

Cite this paper
nullA. Yakoubi, H. Mebtouche, M. Ameri and B. Bouhafs, "Structure and Bonding of Nanolayered Ternary Phosphides," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1383-1391. doi: 10.4236/msa.2011.210187.
References
[1]   H. Nowotny, “Strukturchemie Einiger Verbindungen der Ubergangsmetalle mit den Elementen C, Si, Ge, Sn,” Progress in Solid State Chemistry, Vol. 5, 1971, pp. 27-70.

[2]   M. W. Barsoum, “The MN+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates,” Progress in Solid State Chemistry, Vol. 28, No. 1-4, 2000, pp. 201-281. doi:10.1016/S0079-6786(00)00006-6

[3]   M. W. Barsoum and T. El-Raghy, “The MAX Phases: Unique New Carbide and Nitride Materials,” American Scientist, Vol. 89, No. 4, 2001, pp. 336-345.

[4]   M.W. Barsoum and T. El-Raghy, “Synthesis and characterization of a remarkable ceramic: Ti3SiC2,” Journal of the American Ceramic Society, Vol. 79, No. 7, 1996, pp. 1953-1956. doi:10.1111/j.1151-2916.1996.tb08018.x

[5]   M. W. Barsoum, T. El-Raghy and L. U. J. T. Ogbuji, “Oxidation of Ti3SiC2 in Air,” Journal of the Electrochemical Society, Vol. 144, No. 7, 1997, pp. 2508-2516. doi:10.1149/1.1837846

[6]   T. El-Raghy, et al., “Processing and Mechanical Properties of Ti3SiC2: II. Effect of Grain Size and Deformation Temperature,” Journal of the American Ceramic Society, Vol. 82, No. 10, 1999, pp. 2855-2860.

[7]   Z. Sun, Y. Zhou, and M. Li, “Oxidation Behaviour of Ti3SiC2-Based Ceramic at 900?C - 1300?C in Air,” Corrosion Science, Vol. 43, No. 6, 2001, pp. 1095-1109. doi:10.1016/S0010-938X(00)00142-6

[8]   “MAXTHAL Data Sheet,” 3-One-2 LLC, Voorhees, New Jersey. http://www.3one2.com

[9]   “Globar Bulk Ceramic Non-Inductive Resistors,” Kanthal, an affiliate of Sandvic AB, Sandviken, Sweden. http://www.kanthal.com

[10]   A. D. Bortolozo, O. H. Sant’Anna, C. A. M. dos Santos and A. J. S. Machado, “Superconductivity in the Hexagonal-Layered Nanolaminates Ti2InC Compound,” Solid State Communications, Vol. 144, No. 10-11, 2007, pp. 419-421. doi:10.1016/j.ssc.2007.09.028

[11]   T. H. Scabarozi, S. Amini, P. Finkel, O. D. Leaffer, J. E. Spanier, M. W. Barsoum, M. Drulis, H. Drulis, W. M. Tambussi, J. D. Hettinger and S. E. Lofland, “Electrical, Thermal, and Elastic Properties of the MAX-Phase Ti2SC,” Journal of Applied Physics, Vol. 104, No. 3, 2008, pp. 033502-033506. doi:10.1063/1.2959738

[12]   M. Magnuson, M. Mattesini, S. Li, C. H?glund, M. Beckers, L. Hultman, and O. Eriksson, “Bonding Mechanism in the Nitrides Ti2AlN and TiN: An Experimental and Theoretical Investigation,” Physical Review B, Vol. 76, No. 19, 2007, pp. 195127-195135. doi:10.1103/PhysRevB.76.195127

[13]   V. Mauchamp, G. Hug, M. Bugnet, T. Cabioc’h and M. Jaouen, “Anisotropy of Ti2AlN Dielectric Response Investigated by ab Initio Calculations and Electron Energy-Loss Spectroscopy,” Physical Review B, Vol. 81, No. 3, 2010, pp. 035109-035116. doi:10.1103/PhysRevB.81.035109

[14]   N. Haddad, E. Garcia-Caurel, L. Hultman, M. W. Barsoum and G. Hug, “Dielectric Properties of Ti2AlC and Ti2AlN MAX Phases: The Conductivity Anisotropy,” Journal of Applied Physics, Vol. 104, No. 2, 2008, pp. 023531- 023540. doi:10.1063/1.2960340

[15]   H. Boller, “Gemischte Pnictide Mit Geordnetem TiP-Typ (Ti2SC-Typ),” Monatshefte für Chemie, Vol. 104, No. 1, 1973, pp. 166-171. doi:10.1007/BF00911157

[16]   D. Music, Z. Sun, and J. M. Schneider, “Structure and Bonding of M2SbP (M = Ti, Zr, Hf),” Physical Review B, Vol. 71, No. 9, 2005, pp. 092102-092104. doi:10.1103/PhysRevB.71.092102

[17]   D. Music and J. M. Schneider, “The Correlation between the Electronic Structure and Elastic Properties of Nanolaminates,” Journal of the Minerals, Metals and Materials Society, Vol. 59, No. 7, 2007, pp. 60-64.

[18]   P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, “WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties,” Technische Universit?t Wien, Vienna, 2001.

[19]   G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sj?stedt and L. Nordstr?m, “Efficient Linearization of the Augmented Plane-Wave Method,” Physical Review B, Vol. 64, No. 19, 2001, pp. 195134-195143. doi:10.1103/PhysRevB.64.195134

[20]   K. Schwarz, P. Blaha and G. K. H. Madsen, “Electronic Structure Calculations of Solids Using the WIEN2k PackAge for Material Sciences,” Computer Physics Communications, Vol. 147, No. 1-2, 2002, pp. 71-76. doi:10.1016/S0010-4655(02)00206-0

[21]   J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review B, Vol. 45, No. 23, 1992, pp. 13244-13249. doi:10.1103/PhysRevB.45.13244

[22]   H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, 1976, pp. 5188-5192. doi:10.1103/PhysRevB.13.5188

[23]   P. E. Bl?chl, O. Jepsen and O. K. Andersen, “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Physical Review B, Vol. 49, No. 23, 1994, 16223-16233.

[24]   F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Academy of Sciences of the USA, Vol. 30, No. 9, 1944, pp. 244-247. doi:10.1073/pnas.30.9.244

[25]   Naval Research Laboratory Center for Computational Materials Science, “Structures in a Hexagonal Space Group (#168-#194),” 2002. http://cst-www.nrl.navy.mil/lattice/spcgrp/hexagonal.html#sg194

[26]   G. Hug, M. Jaouen and M. W. Barsoum, “X-Ray Absorption Spectroscopy, EELS, and Full-Potential Augmented Plane Wave Study of the Electronic Structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC,” Physical Review B, Vol. 71, No. 2, 2005, pp. 024105-024116. doi:10.1103/PhysRevB.71.024105

[27]   G. Hug and E. Fries, “Full-Potential Electronic Structure of Ti2 AlC and Ti2AlN,” Physical Review B, Vol. 65, No. 11, 2002, pp. 113104-113107. doi:10.1103/PhysRevB.65.113104

[28]   N. W. Ashcroft and N. D. Mermin, “Crystal Lattices,” Solid State Physics, Chapter 4, Brooks/Cole, Belmont, 1976, pp. 64-83.

[29]   R. R. Pawar and V. T. Deshpande, “The Anisotropy of the Thermal Expansion of α-Titanium,” Acta Crystallogra- phica, Vol. A24, Part 2, 1968, pp. 316-317. doi:10.1107/S0567739468000525

[30]   B. Olinger and J. C. Jamieson, “Zirconium: Phases and Compressibility to 120 Kilobars,” High Temperatures- High Pressures, Vol. 5, No. 2, 1973, pp. 123-131.

[31]   R. Russell, “On the Zr-Hf System,” Journal of Applied Physics, Vol. 24, No. 2, 1952, pp. 232-233.

[32]   D. Schiferl, “50-Kilobar Gasketed Diamond Anvil Cell for Single-Crystal X-Ray Diffractometer Use with the Crystal Structure of Sb up to 26 Kilobars as a Test Problem,” Review of Scientific Instruments, Vol. 48, No. 1, 1977, pp. 24-30. doi:10.1063/1.1134861

[33]   A. Simon, H. Borrmann and H. Craubner, “Crystal Struc- ture of Ordered White Phosphorus(β-P),” Phosphorus and Sulfur and the Related Elements, Vol. 30, No. 1-2, 1987, pp. 507-510. doi:10.1080/03086648708080631

[34]   G. Hug and E. Fries, “Full-Potential Electronic Structure of Ti2AlC and Ti2AlN,” Physical Review B, Vol. 65, No. 11, 2002, pp. 113104-113107. doi:10.1103/PhysRevB.65.113104

[35]   T. Liao, J. Y. Wang and Y. C. Zhou, “Superior Mechanical Properties of Nb2AsC to Those of Other Layered Ternary Carbides: A First-Principles Study,” Journal of Physics: Condensed Matter, Vol. 18, No. 41, 2006, pp. L527-L533. doi:10.1088/0953-8984/18/41/L04

[36]   J. H. Xu and A. J. Freeman, “Band Filling and Structural Stability of Cubic Trialuminides: YAl3, ZrAl3, and NbAl3,” Physical Review B, Vol. 40, No. 17, 1989, pp. 11927- 11930. doi:10.1103/PhysRevB.40.11927

[37]   J. Wang and Y. Zhou, “Dependence of Elastic Stiffness on Electronic Band Structure of Nanolaminate M2AlC (M = Ti, V, Nb, and Cr) Ceramics,” Physical Review B, Vol. 69, No. 21, 2004, pp. 214111-214120. doi:10.1103/PhysRevB.69.214111

[38]   Z. Sun, D. Music, R. Ahuja, S. Li and J. M. Schneider, “Bonding and Classification of Nanolayered Ternary Carbides,” Physical Review B, Vol. 70, No. 9, 2004, pp. 092102-092104. doi:10.1103/PhysRevB.70.092102

[39]   Z. Sun, R. Ahuja, S. Li and J. M. Schneider, “Structure and Bulk Modulus of M2AlC (M = Ti, V, and Cr),” Applied Physics Letters, Vol. 83, No. 5, 2003, pp. 899-871. doi:10.1063/1.1599038

[40]   A. Grechnev, S. Li, R. Ahuja, O. Eriksson, U. Jansson and O. Wilhelmsson, “Layered Compound Nb3SiC2 Predicted from First-Principles Theory,” Applied Physics Letters, Vol. 85, No. 15, 2004, pp. 3071-3073. doi:10.1063/1.1791734

[41]   A. Grechnev, R. Ahuja and O. Eriksson, “Balanced Crystal Orbital Overlap Population—A Tool for Analysing Chemical Bonds in Solids,” Journal of Physics: Condensed Matter, Vol. 15, No. 45, 2003, pp. 7751-7761. doi:10.1088/0953-8984/15/45/014

[42]   H. F. Franzen, “Structure and Bonding in Metal-Rich Compounds: Pnictides, Chalcides and Halides,” Progress in Solid State Chemistry, Vol. 12, No. 1, 1978, pp. 1-39. doi:10.1016/0079-6786(78)90002-X

[43]   G. Melnyk, A. Leithe-Jasper, P. Rogl and R. Skolozdra, “The Antimony-Iron-Niobium (Sb-Fe-Nb) System,” Journal of Phase Equilibria, Vol. 20, No. 2, 1999, pp. 113-118.

 
 
Top