[1] Parker, B. (2007) Investigating Contaminated Sites on Fractured Rock using the DFN Approach. Proceedings at the USEPA/NGWA Fractured Rock Conference: State of the Science and Measuring Success in Remediation, Maine, 150-168.
[2] Parker, B., Cherry, J. and Chapman, S. (2012) Discrete Fracture Network Approach for Studying Contamination in Fractured Rock. AQUA mundi, Am06052, 101-116.
[3] Keys, S. (1990) Techniques of Water-Resources Investigations of the United States Geological Survey. USGS Report, 165 p.
https://pubs.usgs.gov/twri/index090905.html
[4] Lane, J. (2002) An Integrated Geophysical and Hydraulic Investigation to Characterize a Fractured-Rock Aquifer. U.S. Department of the Interior, U.S. Geological Survey, Norwalk, 97 p.
https://water.usgs.gov/ogw/bgas/publications/wri014133/
[5] Lau, J., Auger, L. and Bisson, J. (1987) Subsurface Fracture Surveys using a Borehole Television Camera and Acoustic Televiewer: Reply. Canadian Geotechnical Journal, 24, 499-508.
https://doi.org/10.1139/t87-066
[6] Cruden, D. (1988) Subsurface Fracture Surveys using a Borehole Television Camera and Acoustic Televierwer: Discussion. Canadian Geotechnical Journal, 25, 843.
https://doi.org/10.1139/t88-094
[7] Morin, R., Godin, R., Nastev, M. and Rouleau, A. (2007) Hydrogeologic Controls Imposed by Mechanical Stratigraphy in Layered Rocks of the Chateauguay River Basin, a US-Canada Transborder Aquifer. Journal of Geophysical Research, 112, B04403.
[8] Robinson, D., Binley, A., Crook, N. and Slater, L. (2008) Advancing Process-Based Watershed Hydrological Research using near Surface Geophysics: A Vision for, and Review of, Electrical and Magnetic Geophysical Methods. Hydrological Process, 22, 3604-3635.
https://doi.org/10.1002/hyp.6963
[9] Francese, R., Mazzarini, F., Bistacchi, A., Morelli, G., Pasquare, G., Praticelli, N., Robain, H., Wardel, N. and Zaja, A. (2009) A Structural and Geophysical Approach to the Study of Fractured Aquifers in the Scansano-Magliano in Toscana Ridge, Southern Tuscany, Italy. Hydrogeology Journal, 17, 1233-1246.
https://doi.org/10.1007/s10040-009-0435-1
[10] Paillet, F. (1995) Using Borehole Flow Logging to Optimize Hydraulic Test Procedures in Heterogeneous Fractured Aquifers. Hydrogeology Journal, 3, 4-20.
https://doi.org/10.1007/s100400050249
[11] Day-Lewis, F., Johnson, C., Paillet, F. and Halford, K. (2011) A Computer Program for Flow-Log Analysis of Single Holes (FLASH). Groundwater, 49, 926-931.
https://doi.org/10.1111/j.1745-6584.2011.00798.x
[12] Johnson, C., Mondazzi, R. and Joesten, P. (2009) Borehole Geophysical Investigation of a Formerly Used Defense Site, Machiasport, Maine, 2003-2006. USGS Scientific Investigations Report 5120, 87 p.
https://pubs.usgs.gov/sir/2009/5120/pdf/sir2009-5120_text_508.pdf
[13] Lapcevic, P. (1988) Results of Borehole Packer Tests at the Ville Mercier Groundwater Treatment Site. NWRI Contribution 88, RRB-88-92. National Water Research Institute Canada Centre for Inland Waters, Burlington, 30 p.
[14] Novakowski, K., Bickerton, G., Lapcevic, P.V.J. and Ross, N. (2006) Measurements of Groundwater Velocity in Discrete Rock Fractures. Journal of Contaminant Hydrology, 82, 44-60.
[15] Wahnfried, I. (2010) Hydrogeologycal Conceptual Model of the Serra GeralAquitard and Guarani Aquifer in Ribeir ãoPreto, São Paulo, Brazil. Doctoral Thesis, Institute of Geosciences, University of Sao Paulo, Sao Paulo. (In Portuguese)
http://www.teses.usp.br/teses/disponiveis/44/44138/tde-07072010-163245/publico/I
W.pdf
[16] Quinn, P., Parker, B. and Cherry, J. (2011) Using Constant Head Step Tests to Determine Hydraulic Apertures in Fractured Rock. Journal of Contaminant Hydrology, 126, 85-99.
[17] Quinn, P., Cherry, J. and Parker, B. (2011) Quantification of Non-Darcian Flow Observed during Packer Testing in Fractured Sedimentary Rock. Water Resources Research, 47, 15 p.
https://doi.org/10.1029/2010WR009681
[18] Quinn, P., Cherry, J. and Parker, B. (2012) Hydraulic Testing using a Versatile Straddle Packer System for Improved Transmissivity Estimation in Fractured-Rock Boreholes. Hydrogeology Journal, 20, 1529-1547.
https://doi.org/10.1007/s10040-012-0893-8
[19] IG-SMA, InstitutoGeológico (1993) Aids of the Geological Physical Environment to the Planning of Campinas Municipality (Brazil). Technical Report, Volume II, Sao Paulo. (In Portuguese)
[20] Almeida, F., Hassui, Y., Brito Neves, B. and Fuck, R. (1977) Structural Brazilian Provinces. Proceedings at the 8th SBG Northeast Geology Symposium, Campina Grande.
[21] Vaz, L. (1996) Genetic Classification of Soils and Weathered Rock Horizons in Tropical Regions. Solos e Rochas, 19, 117-136. (In Portuguese)
[22] Waterloo Brasil (2011) Geological Study and Top of Bedrock Mapping. Technical Report, Confidential, São Paulo.
[23] Fernandes, A. (1997) Cenozoic Tectonics of the Piracicaba River Basin and Its Application to Hydrogeology. Doctoral Thesis, Institute of Geosciences, University of Sao Paulo, Sao Paulo. (In Portuguese)
http://www.teses.usp.br/teses/disponiveis/44/44133/tde-30092013-163243/pt-br.php
[24] Pankow, J. and Cherry, J. (1996) Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behaviour and Remediation. Waterloo Press, Oregon, 525 p.
[25] Kueper, B., Weathall, G., Smith, J., Leharne, S. and Lerner, D. (2003) An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface. Vol. 133, R&D Publication, 67.
http://eprints.whiterose.ac.uk/90412/1/DNAPL%20handbook%20final.pdf
[26] Terzaghi, R. (1965) Sources of Error in Joint Surveys. Géotechnique, 15, 287-304.
https://doi.org/10.1680/geot.1965.15.3.287
[27] Pino, D. (2012) Structural Hydrogeology in the Kenogamy Uplands, Quebec, Canada. MSc Thesis, L’Université du Québec, Chicoutimi.
http://constellation.uqac.ca/2572/1/030329562.pdf
[28] Hvorslev, M. (1951) Time Lag and Soil Permeability in Ground-Water Observations, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg.
http://www.csus.edu/indiv/h/hornert/geol_210_summer_2012/week%203%20reading
s/hvorslev%201951.pdf
[29] Barbosa, M., Bertolo, R.A. and Hirata, R. (2017) A Method for Environmental Data Management Applied to Megasites in the State of Sao Paulo, Brazil. Journal of Water Resource and Protection, 9, 322-338.
https://doi.org/10.4236/jwarp.2017.93021