JWARP  Vol.9 No.10 , September 2017
Groundwater Level Changes since 1978 in an African City on Basement Rocks: The Case of the CIEH Borehole in Ouagadougou (Burkina Faso)
Abstract: The CIEH piezometer, located in the center of Ouagadougou city presents a water level record spanning the West African Drought which peaked during the 80s and 90s. Its water level is investigated as a potential proxy for groundwater water resources in West African basement rock aquifers submitted to climate changes. 23 boreholes and wells in various land uses and within a 2 km radius around the CIEH piezometer were monitored during the 2013-2014 hydrologic year. The minimum water level occurred in May, at the end of the dry season, while the maximum took place in October, one month after the end of the rainy season. The mean water level amplitude is 3 m, the minimum amplitude being reached at the CIEH piezometer (0.76 m). Moreover, the CIEH piezometer is located in a 2 m amplitude water table depression either in May or in October. Simplified 2d modeling using a general basement aquifer structure shows that (i) the water level in the piezometer is under ongoing influence of the spillway raise of the nearby dam#3 lake in 2002, (ii) the whole 1978-2004 period cannot be modelled with constant parameters. A 3% decrease of water uptake is adopted after 1985, presumably resulting from land use changes in the Ouagadougou city. The water table at the CIEH piezometer is presently at its 1978 level, which can considered as a pre-drought value. However this includes a 1.5 m contribution of the two abovementioned anthropic effects Further quantitative interpretations of the CIEH piezometer record will require additional geophysical and hydrological investigations.
Cite this paper: Mouhouyouddine, A. , Yameogo, S. , Genthon, P. , Paturel, J. and Guilliod, M. (2017) Groundwater Level Changes since 1978 in an African City on Basement Rocks: The Case of the CIEH Borehole in Ouagadougou (Burkina Faso). Journal of Water Resource and Protection, 9, 1097-1118. doi: 10.4236/jwarp.2017.910072.

[1]   Hulme, M. (2001) Climatic Perspectives on Sahelian Dessication: 1973-1998. Global Environmental Change, 11, 19-29.

[2]   Ardoin, S., Lubes-Niel, H., Servat, E., Dezetter, A., Boyer, J.-F., Mahé, G. and Paturel, J.-E. (2003) Analyse de la persistance de la sécheresse en Afrique de l’ouest: caractérisation de la situation de la décennie 1990. [Analysis of the Persistency of the West African Drought. Characterization of the 90s.] Hydrology of Die Mediterranean and Semiarid Regions, Montpellier, April 2003. Proc. Int. Ass. Hyd. Sci., 278, 223-228. (In French)

[3]   Dewandel, B., Lachassagne, P. and Krishnamurthy, N.S. (2006) A Generalized 3-D Geological and Hydrogeological Conceptual Model of Granite Aquifers Controlled by Single or Multiphase Weathering. Journal of Hydrology, 330, 260-284.

[4]   Dewandel, B., Lachassagne, P., Zaidi, F.K. and Chandra, S. (2011) A Conceptual Hydrodynamic Model of a Geological Discontinuity in Hard Rock Aquifers: Example of a Quartz Reef in Granitic Terrain in South India. Journal of Hydrology, 405, 474-487.

[5]   Foster, S. (2012) Hard-Rock Aquifers in Tropical Regions: Using Science to Inform Development and Management Policy. Hydrogeology Journal, 20, 659-672.

[6]   MacDonald, A.M., Boniir, H.C., Dochataigh, B.E.O. and Taylor, R.G. (2012) Quantitative Maps of Groundwater Resources in Africa. Environmental Research Letter, 7, Article ID: 024009.

[7]   Vouillamoz, J.-M., Lawson, F.M.A. and Descloitres, M. (2015) Groundwater in Hard Rocks of Benin: Regional Storage and Buffer Capacity in the Face of Change. Journal of Hydrology, 520, 379-386.

[8]   MacDonald, A.M., Calow, R.C., Macdonald, D.M.J., Darling, W.G. and Dochartaigh, B.é.ó. (2009) What Impact Will Climate Change Have on Rural Water Supplies in Africa? Hydrological Sciences Journal, 54, 690-703.

[9]   Fournet, F., Meunier-Nikiema, A. and Salem, G. (2008) Ouagadougou (1850-2004). Une urbanisation différentiée, IRD, Marseille, France.

[10]   UN-Habitat (2014) The State of African Cities 2014, Re-Imagining Sustainable Urban Transitions. UN-Habitat, Nairobi, Kenya, 273 p.

[11]   Castaing, C., Le Métour, J. and Billa, M. (2003) Notice explicative de la carte géologique et minière à 1/1 000 000ème du Burkina Faso. [Explanatory Note of the 1/1.000.000 Mining and Geological Map of Burkina Faso.] BUMIGEB, Ouagadougou. (In French)

[12]   Chilton, P.J. and Foster, S. (1995) Hydrogeological Characterisation and Water-Supply Potentiel of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3, 36-49.

[13]   Taylor, R. and Howard, K. (2000) A Tectono-Geomorphic Model of the Hydrogeology of Deeply Weathered Crystalline Rock: Evidence from Uganda. Hydrogeology Journal, 8, 279-294.

[14]   Koita, M. and Jourde, H. (2011) Hydrogeological Properties of Fractured Rocks (Granites, Metasediments and Volcanites) under the Humid Tropical Climate of West Africa. Advances in the Research of Aquatic Environment, 2, 3-10.

[15]   Yameogo, S. (2008) Ressources en eau souterraine du centre urbain de Ouagadougou au Burkina Faso. [Groundwater Resources of the Urban Center of Ouagadougou, Burkina Faso.] Thèse, Université d’Avignon et des Pays de Vaucluse, 245 p. (In French)

[16]   Lachassagne, P., Wyns, R. and Dewandel, B. (2011) The Fracture Permeability of Hard Rock Aquifers Is Due Neither to Tectonics, Nor to Unloading, But to Weathering Processes. Terra Nova, 23, 145-161.

[17]   Filippi, C., Milville, F. and Thiéy, D. (1990) Evaluation de la recharge naturelle des aquifères en climat Soudano-Sahélien par modélisation hydrologique globale: Application à dix sites au Burkina Faso. [Assessment of the Natural Recharge of Aquifer in a Soudano-Sahelian Climate Using Global Hydrological Modeling.] Hydrological Sciences Journal, 35, 29-48. (In French)

[18]   Compaoré, G., Lachassagne, P., Pinter, T. and Travi, Y. (1997) Evaluation du stock d’eau des altérites: Expérimentation sur le site granitique de Sanon (Burkina Faso). [Assessment of the Water Volume Stored in Alterites. Experiments in the Granitic site of Sanon (Burkina Faso).] Proc. Int. Ass. Hydrol. Sci., 241, 37-46. (In French)

[19]   IWACO (1986) Approvisionnement en eau potable de la ville de Ouagadougou (période 1985-2005), Etude hydrogéologique, rapport général, 29 p. [Water Supply in Ouagadougou. Hydrogeological Studies.] (In French)

[20]   CIEH (1964) Alimentation en eau de Ouagadougou; Etudes hydrogéologiques. [Water Supply in Ouagadougou. Hydrogeological Studies.] Rapport du ministère des travaux publics de la construction et des transports de la république de Haute Volta (Burkina Faso), 66 p. (In French)

[21]   Maréchal, J.C., Wyns, R. and Lachassagne, P. (2003) Anisotropie verticale de la perméabilité de l’ horizon fissuré des aquifères de socle: concordance avec la structure géologique des profils d’ altération. [Vertical Permeability Anisotropy in the Fissured Layer of Basement Aquifers: Comparison with the Geological Structure of Weathering Profiles.] C. R Géoscience, 335, 451-460. (In French)

[22]   Maréchal, J.C., Dewandel, B. and Subrahmanyam, K. (2004) Use of Hydraulic Tests at Different Scales to Characterize Fracture Network Properties in the Weathered-Fractured Layer of a Hard Rock Aquifer. Water Resources Research, 40, 1-17.

[23]   Martin, J. and Thiéy, D. (1987) Analyse d’une longue série pièzomètrique au Burkina Faso. Etude de la variabilité climatique. [Analysis of a Long Piezometric Record in Burkina Faso. Effect of the Climatic Variability.] Hydrogéologie, 2, 137-146. (In French)

[24]   Bacye (1986) Contribution à la mise en valeur des potentialités éco-touristiques de la ville de Ouagadougou: Projet de valorisation du Parc urbain Bangr-Weoogo. [Contribution to Enhancing the Eco-Touristic Opportunities in Burkina Faso. The Case of the Bangr Weogo Park.] EAMAU, Ouagadougou. (In French)

[25]   Thiéry, D. (2003) Logiciel GARDENIA, Version 6.0. Guide d’utilisation, BRGM/RP 52832-FR, 102 p.

[26]   Hargbauh, A.W. and McDonald, M.G. (1996a). User’s Documentation for MODLFOW-96 an Update to the U.S. Geological Survey Finite Difference Groundwater Flow Model. Open-File Report 96-485, U.S. Geological Survey.

[27]   Hargbauh, A.W. and McDonald, M.G. (1996b) Programmer’s Documentation for MODFLOW-96 the U.S. Geological Survey Finite Difference Groundwater Flow Model. Open-File Report 96-486, U.S. Geological Survey.

[28]   BURGEAP (1988) Essais de débits simplifies sur forages d’hydraulique villageoise: Notice Explicative. [Simplified Aquifer Tests in Village Water Supply. Explanatory Note.] CIEH, Ouagadougou. (In French)

[29]   Van der Sommen, J.J. and Geirnaert, W. (1988) On the Continuity of Aquifer Systems on the Crystaline Basement of Burkina Faso. In: Simmers, I., Ed., Estimation of Natural Groundwater Recharge, NATO ASI Series, C222, Springer, Dordrecht, 29-45.

[30]   Turcotte, D.L. and Schubert, G. (2014) Geodynamics. Cambridge University Press, Cambridge, 848 p.

[31]   Thiéry, D. (1988) Analysis of Long-Duration Piezometric Records from Burkina Faso Used to Determine Aquifer Recharge. In: Simmers, I., Ed., Estimation of Natural Groundwater Recharge, NATO ASI Series, C222, Springer, Dordrecht, 477-489.

[32]   Naik, P.K., Tambe, J.A., Dehury, B.N. and Tiwari, A.N. (2008) Impact of Urbanization on the Groundwater Regime in a Fast Growing City in Central India. Environmental Monitoring and Assessment, 146, 339-373.

[33]   Leduc, C., Favreau, G. and Schroeter, P. (2001) Long-Term Rise in a Sahelian Water-Table: The Continental Terminal in South-West Niger. Journal of Hydrology, 243, 43-54.