JAMP  Vol.5 No.9 , September 2017
Numerical Simulation of Lateral Jet Interaction
Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing experimental results. The lateral jet interaction characteristics of lateral jet in subsonic/ transonic compressible crossflow on an ogive-cylinder configuration are simulated numerically. Variation characteristics of normal force amplification factor, pitching moment and amplification factor are analyzed and compared with the results at supersonic condition. Research results and some useful conclusions can be provided for the design of RCS aircraft control system as basis and reference in subsonic/transonic compressible crossflow.
Cite this paper: Chen, J. , Liu, Y. and Bo, J. (2017) Numerical Simulation of Lateral Jet Interaction. Journal of Applied Mathematics and Physics, 5, 1686-1693. doi: 10.4236/jamp.2017.59141.

[1]   Dash, S.M., Perrell, E.R., Arunajatesan, S., et al. (2001) Simulation of High Speed Jet Interactions in Complex Aeroacoustic Environments. AIAA 2001-2245.

[2]   Kennedy, K., Walker, B. and Mikkeisen, C. (1999) Jet Interaction Effects on a Missile with Aer-odynamic Control Surfaces. AIAA 1999-0807.

[3]   Srivastava, B. (1999) Asymmetric Divert Jet Performance of a Supersonic Missile: Computational and Experimental Comparisons. Journal of Spacecraft and Rocket, 36, 621-632.

[4]   Spaid, F.W. and Cassel, L.A. Aerodynamic Inter-ference Induced by Reaction Controls. AGARD-AG-173.

[5]   Stallings Jr., R.L., Lamb, M. and Watson, C.B. Effect of Reynolds Number on Stability Characteristics of a Cruciform Wing-Body at Supersonic Speeds. NASA Technical Paper 1683.

[6]   Holden, M., Parker, R., et al. (2000) Hypersonic Testing in the LENS Fa-cility for Lateral Jet Induced Interactions. AIAA 2000-2038.

[7]   Graham, M.J., Wein-acht, P., Brandeis, J. and Angelini, R. (2000) A Numerical Investigation of Supersonic Jet Interaction for Finned Bodies. AIAA 2000-0768.

[8]   Price, B.B., Elliott, G.S. and Ogot, M. (1998) Experimental Optimization of Transverse Jet Injector Geometries for Mixing into a Supersonic Flow. AIAA 1998-3019.

[9]   Liu, Y.F., Li, S.X., Ni, Z.Y. and Wang, J.Q. (2007) Numerical Visualization of Lateral Jet Interaction Flowfields. The 9th Asian Symposium on Visualization, Hong Kong.

[10]   Wang, J.Q., Li, S.X. and Sun, M. (2006) Numerical Simulation of Supersonic Lateral Jet Interaction Turbu-lent Flowfields. Acta Aerodynamica Sinica, 24, 403-409.

[11]   Liu, Y.F., Li, S.X. and Ni, Z.Y. (2009) Effects of Multiple Jets Aerodynamic Interaction. Application and De-velopments of CFD in Large Airbus. Shanghai Jiaotong University Press.

[12]   Seginer, A. (1983) Interaction of Multiple Supersonic Jets with a Transon-ic Flow Field. AIAA 1983-1680.

[13]   Hsieh, T. (1998) Computation and Analysis of Cross Jet Interaction Flowfields of a Biconic Body at Incidences. AIAA 1998-2625.

[14]   Li, S.X. and Ni, Z.Y. (2003) Free Jet Flow and Interacted Jet Flow. The 7th Asian Symposium on Visualization, Singapore.

[15]   Brandeis, J. and Gill, J. (1998) Experimental Investigation of Super- and Hypersonic Jet Interaction on Missile Configurations. Journal of Spacecraft and Rockets, 35, 296-302.

[16]   Keener, E.R. and Chapman, G.T. (1977) Side Forces on a Tangent Ogive Forebody with a Fineness Ratio of 3.5 at High Angles of Attack and Mach Numbers from 0.1 to 0.7. NASA TM X-3437.

[17]   Lamont, P.J. Pressure Measurements on an Ogive-Cylinder at High Angles of Attack with Laminar, Transitional, or Turbulent Separation. AIAA 80-1556.