MSA  Vol.8 No.10 , September 2017
Composition and Band Gap Controlled AACVD of ZnSe and ZnSxSe1-x Thin Films Using Novel Single Source Precursors
Abstract: Polycrystalline thin films of ZnSe and ZnSxSe1-x have been deposited on glass substrates by Aerosol Assisted Chemical Vapour Deposition (AACVD) from bis(diethyldiselenocarbamato)zinc(II) and a 1:1 and 1:0.75 mixtures of bis(diethyldiselenocarbamato)zinc(II) and bis(diethyldithiocarbamato)zinc(II) as precursors. All films were characterized by p-XRD, SEM, EDX, Raman spectroscopy, photoluminescence (PL and UV/Vis spectroscopy. The band gap of pure ZnSe thin films was found to be 2.25 whereas the band gap of ZnSxSe1-x films varied from 2.55 to 2.66 eV depending on the sulfur content in the films. PL emission spectra showed a clear blue shift for ZnSxSe1-x films compared to ZnSe due to the sulphur content in the films which increase the band gap. The band gap of ZnSSe can be controlled by sulfur to selenium ratio in the alloy. The morphology of the ZnSe thin films changed from small randomly shaped crystallites to triangles whereas the morphology of ZnSxSe1-x was mainly based on cuboids.
Cite this paper: Alghamdi, Y. (2017) Composition and Band Gap Controlled AACVD of ZnSe and ZnSxSe1-x Thin Films Using Novel Single Source Precursors. Materials Sciences and Applications, 8, 726-737. doi: 10.4236/msa.2017.810052.

[1]   Haase, M.A., Qiu, J., Depuydt, J.M. and Cheng, H. (1991) Blue Green Laser Diodes. Applied Physics Letters, 59, 1272-1974.

[2]   Jeon, H., Ding, J., Patterson, W. and Nurmikko, A.V. (1991) Blue Green Injection Laser Diodes in (Zn,Cd)Se/ZnSe Quantum Wells. Applied Physics Letters, 59, 3619-3622.

[3]   Lakshmikvmar, S.T. (1994) Selenization of Cu and in Thin Films for the Preparation of Selenide Photo-Absorber Layers in Solar Cells Using Se Vapour Source. Solar Energy Materials and Solar Cells, 32, 7-9.

[4]   Zhu, Y.-C. and Bando, Y. (2003) Preparation and Photoluminescence of Single-Crystal Zinc Selenide Nanowires. Chemical Physics Letters, 377, 367-370.

[5]   Mirov, S.B., Fedorov, V.V., Graham, K., Moskalev, I.S., Badikov, V.V. and Panyutin, V. (2002) Erbium Fiber Laser-Pumped Continuous-Wave Microchip Cr2+:ZnS and Cr2+:ZnSe Lasers. Optics Letters, 27, 909-914.

[6]   Kouklin, N., Menon, L., Wong, A.Z., Thompson, D.W., Woollam, J.A. and Williams, P.F. (2001) Giant Photoresistivity and Optically Controlled Switching in Self-Assembled Nanowires. Applied Physics Letters, 79, 4423.

[7]   Lokhande, C.D., Patil, P.S., Tributsch, H. and Ennaoui, A. (1998) ZnSe Thin Films by Chemical Bath Deposition Method. Solar Energy Materials and Solar Cells, 55, 379-393.

[8]   Natarajan, C., Sharon, M., Lévy-Clément, C. and Neumann-Spallart, M. (1994) Electrodeposition of Zincselenide. Thin Solid Films, 237, 118-123.

[9]   Gal, D. and Hodes, G. (2000) Electrochemical Deposition of ZnSe and (Zn,Cd)Se Films from Nonaqueous Solutions. Journal of the Electrochemical Society, 147, 1825-1828.

[10]   Pol, S.V., Pol, V.G. and Gedanken, A. (2007) Encapsulating ZnS and ZnSe Nanocrystals in the Carbon Shell: A RAPET Approach. The Journal of Physical Chemistry, 111, 13309-13314.

[11]   Ludolph, B., Malik, M.A., O’Brien, P. and Revaprasadu, N. (1998) Novel Single Molecule Precursor Routes for the Direct Synthesis of Highly Monodispersed Quantum dots of Cadmium or Zinc Sulfide or Selenide. Chemical Communications, No. 17, 1849-1850.

[12]   Revaprasadu, N., Malik, M.A., O’Brien, P. and Wakefield, G. (1999) Deposition of Zinc Sulfide Quantum Dots from a Single-Source Molecular Precursor. Journal of Materials Research, 14, 3237-3240.

[13]   Malik, M.A., Motevalli, M. and O’Brien, P. (1995) Structural Diversity in the Carbamato Chemistry of Zinc: X-Ray Single-Crystal Structures of
[(Me2NCH2)2Zn(O2CN(C2H5)2)2] and [C5H5NZn2Me(O2CN(C2H5)2)3]. Inorganic Chemistry, 34, 6223-6225.

[14]   Memon, A.A., Afzaal, M., Malik, M.A., Nguyen, C., O’Brien, P. and Raftery, J. (2006) The N-Alkyldithiocarbamato Complexes [M(S2CNHR)2] (M = Cd(ii)Zn(ii); R = C2H5, C4H9, C6H13, C12H25); Their Synthesis, Thermal Decomposition and Use to Prepare of Nanoparticles and Nanorods of CdS. Dalton Transactions, No. 37, 4499-4505.

[15]   Binks, D.J., Bants, S.P., West, D.P., Malik, M.A. and O’Brien, P. (2003) CdSe/CdS Core/Shell Quantum Dots as Sensitizer of a Photorefractive Polymer Composite. Journal of Modern Optics, 50, 299.

[16]   Malik, M.A., Motevalli, M., Saeed, T. and O’Brien, P. (1993) Methylzinc or Methylcadmium-N,N,N-Trimethyl-Propylenediamine Dithiocarbamates: Precursors for Zinc or Cadmium Sulfide. The X-Ray Crystal Structure of Methylcadmiumtrimethylpropylene-Diaminedithiocarbamate Benzene Solvate. Advanced Materials, 5, 653.

[17]   Panneerselvam, A., Nguyen, C.Q., Malik, M.A., O’Brien, P. and Raftery, J. (2009) The CVD of Silver Selenide Films from Dichalcogenophosphinato and Imidodichalcogenodiphosphinatosilver(I) Single-Source Precursors. Journals of Materials Chemistry, 19, 419-427.

[18]   Malik, M.A., et al. (1999) Studies of the Thermal Decomposition of Some Diselenocarbamato Complexes of Cadmium or Zinc: Molecular Design for the Deposition of MSe Films by CVD. Journal of Materials Chemistry, 10, 2433-2437.

[19]   Akhtar, M., Akhter, J., Malik, M.A., O’Brien, P., Tuna, F., Raftery, J. and Helliwell, M. (2011) Deposition of Iron Sulfide Nanocrystals from Single Source Precursors. Journal of Materials Chemistry, 26, 9737-9745.

[20]   Afzaal, M., Malik, M.A. and O’Brien, P. (2010) Chemical Routes to Chalcogenide Materials as Thin Films or Particles with Critical Dimensions with the Order of Nanometers. Journal of Materials Chemistry, 20, 4031-4040.

[21]   Malik, M.A., et al. (1999) Novel Single-Molecule Precursor Routes for the Direct Synthesis of InS and InSe Quantum Dots. Journal of Materials Chemistry, 9, 2885-2888.

[22]   Abdelhady, L., Ramasamy, K., Malik, M.A., O’Brien, P., Haigh, S.J. and Raftery, J. (2011) New Routes to Copper Sulfide Nanostructures and Thin Films. Journal of Materials Chemistry, 44, 17888-17895.

[23]   Dabbousi, B., Bonasia, P.J. and Arnold, J. (1991) Tris(trimethylsilyl)silanetellurol: Preparation, Characterization, and Synthetic Utility of a Remarkably Stable Tellurol. Journal of Chemical Society, 113, 3186-3188.

[24]   Adeogun, A., Nguyen, C.Q., Afzaal, M., Malik, M.A. and O’Brien, P. (2006) Facile and Reproducible Syntheses of Bis(dialkylselenophosphenyl)-Selenides and -Diselenides: X-Ray Structures of (iPr2PSe)2Se, (iPr2PSe)2Se2 and (Ph2PSe)2Se. Chemical Communications, 2179.

[25]   Nguyen, C.Q., Adeogun, A., Afzaal, M., Malik, M.A. and O’Brien, P. (2006) Metal Complexes of Selenophosphinates from Reactions with (R2PSe)2Se: [M(R2PSe2)n] (M = ZnII, CdII, PbII, InIII, GaIII, CuI, BiIII, NiII; R = iPr, Ph) and [MoV2O2Se2(Se2PiPr2)2]. Chemical Communications, No. 20, 2182.

[26]   Abrahams, I., Malik, M.A., Motevalli, M. and O’Brien, P. (1994) Some Complexes of Neopentylcadmium Species with Dithio- and Di-Selenocarbamates: The Synthesis, Characterization and Single Crystal X-Ray Structure of a Mixed Neopentyl/Diethyldiselenocarbamate of Cadmium: [(CH3)3CCH2CdSe2CNEt2]2. Journal of Organometallic Chemistry, 465, 73-77.

[27]   Hursthouse, M.B., Malik, M.A., Motevalli, M. and O’Brien, P. (1991) Mixed Alkyl Dialkylthiocarbamates of Zinc and Cadmium: Potential Precursors for II/VI Materials. X-Ray Crystal Structure of [MeZnS2CNEt2]2. Organometallics, 10, 730-732.

[28]   Malik, M.A. and O’Brien, P. (1991) Mixed Methyl and Ethylzinc Complexes with Diethylselenocarbamate: Novel Precursors for Zinc Selenide. Chemistry of Materials, 3, 999-1000.

[29]   Malik, M.A., Motevalli, M., O’Brien, P. and Walsh, J.R. (1992) Mixed Neopentyl or Tbutyl Zinc Complexes with Diethyl-Thio or -Selenocarbamates: Potential Precursors for Zinc Chalcogenides. Organometallics, 11, 3436.

[30]   Hursthouse, M.B., Malik, M.A., Motevalli, M. and O’Brien, P. (1992) Synthesis and Characterization of Some Mixed Alkyl Selenocarbamates of Zinc and Cadmium: Novel Precursors for II/VI Materials. Journal of Materials Chemistry, 2, 949-955.

[31]   Afzaal, M., Crouch, D., O’Brien, P. and Park, J.H. (2002) New Approach towards the Deposition of I-III-VI Thin Films. Materials Research Society Symposium Proceedings, 692, 215-220.

[32]   Osakada, K. and Yamamoto, T. (1987) Formation of ZnS and CdS by Thermolysis of Homoleptic Thiolato Compounds [M(SMe)2]n(M = Zn,Cd). Journal of the Chemical Society, Chemical Communications, No. 14, 1117.

[33]   Brennan, J.G., Siegrist, T., Carroll, P.J., Stuczynski, S.M., Reynders, P., Brus, L.E. and Steigerwald, M.L. (1990) Bulk and Nanostructure Group II-VI Compounds from Molecular Organometallic Precursors. Chemical Materials, 2, 403-409.

[34]   Afzaal, M., Crouch, D., Malik, M.A., Motevalli, M., O’Brien, P., Park, J.-H. and Woollins, J.D. (2004) Deposition of II-VI Thin Films by LP-MOCVD Using Novel Single-Source Precursors. European Journal of Inorganic Chemistry, No. 1, 171-177.

[35]   Afzaal, M., Crouch, D., Malik, M.A., Motevalli, M., O’Brien, P. and Park, J.-H. (2003) Deposition of CdSe Thin Films Using a Novel Single-Source Precursor; [MeCd{(SePiPr2)2N}]2. Journal of Materials Chemistry, 13, 639-640.

[36]   Rojas, F.E., Rodríguez, J.A., Quiñones, C., Rodríguez, O. and Gordillo, G. (2004) Effect of Surface Roughness on the Optical Constants of ZnSxSe1-x Thin Films. Physica Status Solidi (A), 201/10, 2366-2369.

[37]   Stutius, W. (1982) Growth and Doping of ZnSe and ZnSxSe1-x by Organometallic Chemical Vapor Deposition. Journal of Crystal Growth, 59, 1-9.

[38]   Teraguchi, N., Hirata, S., H. Mouri, H., Tomomura, Y., Suzuki, A. and Takiguchi, H. (1995) Growth and Characterization of N-Doped ZnSxSe1-x (0 ≦ x < 0.3) by Molecular Beam Epitaxy. Journal of Crystal Growth, 50, 803-806.

[39]   Kevin, P., Alghamdi, Y. and Malik, M.A. (2015) Morphology and Band Gap Controlled AACVD of CdSe and CdSxSe1-x Thin Films Using Novel Single Source Precursors: Bis(diethyldithio/diselenocarbamato)cadmium(II). Materials Science in Semiconductor Processing, 40, 848-854.

[40]   Shakir, M., Kushwaha, K., Maurya, K.K., Bhagavannarayana, G. and Wahab, M.A. (2009) Characterization of ZnSe Nanoparticles Synthesized by Microwave Heating Process. Solid State Communications, 149, 2047-2049.

[41]   Zhang, H., Yang, H.Q., Xie, X.L., Zhang, F.H. and Li, L. (2009) Preparation and Photocatalytic Activity of Hollow ZnSe Microspheres via Ostwald Ripening. Journal of Alloys and Compounds, 473, 65-70.

[42]   Zahn, D.R.T. (1998) Raman Monitoring of Wide Bandgap MBE Growth. Applied Surface Science, 123/124, 276-282.

[43]   Li, H., Wang, B. and Li, L. (2010) Study on Raman Spectra of Zinc Selenide Nanopowders Synthesized by Hydrothermal Method. Journal of Alloys and Compounds, 506/1, 327-330.

[44]   Elschner, B. and Schlaak, M. (1967) Electron Paramagnetic Resonance in Cadmium Oxide. Physics Letters, 24, 10-12.

[45]   Jiang, Y., Meng, X.-M., Yu, W.-C., Liu, J., Ding, J.X., Lee, C.-S. and Lee, S.-T. (2004) Zinc Selenide Nanoribbons and Nanowires. The Journal of Physical Chemistry B, 108, 2784-2787.

[46]   Cheng, Y.C., Jin, C.Q., Gao, F., Wu, X.L., Zhong, W., Li, S.H. and Chu, P.K. (2009) Raman Scattering Study of Zinc Blende and Wurtzite ZnS. Journal of Applied Physics, 106, Article ID: 123505.

[47]   Xu, H., Liang, Y., Liu, Z., Zhang, X. and Hark, S. (2008) Synthesis and Optical Properties of Tetrapod-Like ZnSSe Alloy Nanostructures. Advanced Materials, 20, 3294-3297.