[1] Lamb, A., Green, R., Bateman, I., Broadmeadow, M., Bruce, T., Burney, J. and Goulding, K. (2016) The Potential for Land Sparing to Offset Greenhouse Gas Emissions from Agriculture. Nature Climate Change, 6, 488-492.
https://doi.org/10.1038/nclimate2910
[2] Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H. and Parton, W.J. (2015) Formation of Soil Organic Matter via Biochemical and Physical Pathways of Litter Mass Loss. Nature Geoscience, 8, 776-779.
https://doi.org/10.1038/ngeo2520
[3] Cardozo, N.P., Bordonal, R.D.O. and La Scala, N. (2016) Greenhouse Gas Emission Estimate in Sugarcane Irrigation in Brazil: Is It Possible to Reduce It, and Still Increase Crop Yield? Journal of Cleaner Production, 112, 3988-3997.
https://doi.org/10.1016/j.jclepro.2015.09.040
[4] Madari, B.E., de Freitas Maia, C.M.B. and Novotny, E.H. (2012) Preface: Context and Importance of Biochar Research. Pesquisa Agropecuária Brasileira, 47, 1-2.
https://doi.org/10.1590/S0100-204X2012000500001
[5] Agegnehu, G., Bass, A.M., Nelson, P.N. and Bird, M.I. (2016) Benefits of Biochar, compost and Biochar-Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Science of the Total Environment, 543, 295-306.
https://doi.org/10.1016/j.scitotenv.2015.11.054
[6] Smith, P. (2016) Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Global Change Biology, 22, 1315-1324.
https://doi.org/10.1111/gcb.13178
[7] Verheijen, F., Jeffery, S., Bastos, A.C., Van Der Velde, M. and Diafas, I. (2010) Biochar Application to Soils: A Critical Review of Effects on Soil Properties, Processes and Functions. JRC Scientific and technical Report.
[8] Sánchez-García, M., Sánchez-Monedero, M.A., Roig, A., López-Cano, I., Moreno, B., Benitez, E. and Cayuela, M.L. (2016) Compost vs Biochar Amendment: A Two-Year Field Study Evaluating Soil C Build-Up and N Dynamics in an Organically Managed Olive Crop. Plant Soil, 408, 1-14.
https://doi.org/10.1007/s11104-016-2794-4
[9] Atkinson, C.J., Fitzgerald, J.D. and Hipps, N.A. (2010) Potential Mechanisms for Achieving Agricultural Benefits from Biochar Application to Temperate Soils: A Review. Plant Soil, 337, 1-18.
https://doi.org/10.1007/s11104-010-0464-5
[10] Lehmann, J. and Joseph, S. (2015) Biochar for Environmental Management: Science, Technology and Implementation. Routledge.
[11] Puga, A.P., Abreu, C.A., Melo, L.C.A., Paz-Ferreiro, J. and Beesley, L. (2015) Cadmium, Lead, and Zinc Mobility and Plant Uptake in a Mine Soil Amended with Sugarcane Straw Biochar. Environmental Science and Pollution Research, 22, 17606-17614.
https://doi.org/10.1007/s11356-015-4977-6
[12] Teichmann, I. (2014) Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany. DIW Berlin Discussion Paper, No.1406, X p. 92.
https://doi.org/10.2139/ssrn.2487765
[13] Intergovernmental Panel on Climate Change (2015) Climate Change 2014: Mitigation of Climate Change (Vol. 3). Cambridge University Press, Cambridge.
[14] CONAB (2013) Companhia Nacional de Abastecimento Acompanhamento da safra Brasileira: Cana de açúcar. Agosto Conab, Brasília, X p.19.
[15] Castro, L.T., Fava Neves, M. and Fava Scare, R. (2015) Eficiência de Representação das Associaçoes de Produtores de Cana-de-açúcar no Brasil. Organizaçoes Rurais & Agroindustriais, 17, 383-397.
[16] Orlando, F.J., Carmello, Q.A.C., Pexe, C.A. and Glória, A.M. (1994) Adubação de Soqueira de Cana-de-açúcar sob dois tipos de Despalha: Cana Crua x Cana Queimada. STAB-Açúcar, álcool e Subprodutos, Piracicaba, 12, 7-11.
[17] Goldemberg, J., Nigro, F.E.B. and Coelho, S.T. (2008) Bioenergia no Estado de São Paulo: Situação Atual, Perspectivas e Propostas. Imprensa Oficial do Estado de São Paulo, São Paulo, X p. 152.
[18] Melo, L.C.A., Puga, A.P., Coscione, A.R., Beesley, L., Abreu, C.A. and Camargo, O.A. (2016) Sorption and Desorption of Cadmium and Zinc in Two Tropical Soils Amended with Sugarcane-Straw-Derived Biochar. Journal of Soils and Sediments, 16, 226-234.
https://doi.org/10.1007/s11368-015-1199-y
[19] Bennetzen, E.H., Smith, P. and Porter, J.R. (2016) Agricultural Production and Greenhouse Gas Emissions from World Regions—The Major Trends over 40 Years. Global Environmental Change, 37, 43-55.
https://doi.org/10.1016/j.gloenvcha.2015.12.004
[20] Vieira, A.S. (2015) Gestão Ambiental: Uma Visão Multidisciplinar. Clube de Autores, São Paulo, X p. 285.
[21] Gaunt, J. and Cowie, A. (2009) Biochar, Greenhouse Gas Accounting and Emissions Trading. In: Lehmann, J. and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 317-340.
[22] Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J. and Joseph, S. (2010) Sustainable biochar to Mitigate Global Climate Change. Nature Communications, 1, 56.
https://doi.org/10.1038/ncomms1053
[23] Hammond, J., Shackley, S., Sohi, S. and Brownsort, P. (2011) Prospective Life Cycle Carbon Abatement for Pyrolysis Biochar Systems in the UK. Energy Policy, 39, 2646-2655.
https://doi.org/10.1016/j.enpol.2011.02.033
[24] Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R. and Lehmann, J. (2010) Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environmental Science & Technology, 44, 827-833.
https://doi.org/10.1021/es902266r
[25] Wu, F., Jia, Z., Wang, S., Chang, S.X. and Startsev, A. (2013) Contrasting Effects of Wheat Straw and Its Biochar on Greenhouse Gas Emissions and Enzyme Activities in a Chernozemic Soil. Biology and Fertility of Soils, 49, 555-565.
https://doi.org/10.1007/s00374-012-0745-7
[26] Rondon, M.A., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J. and Amezquita, E. (2006) Enhancing the Productivity of Crops and Grasses while Reducing Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical Soils. 18th World Congress of Soil Science, 9-15.
[27] Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y. and Wu, W. (2011) Reducing CH4 and CO2 Emissions from Waterlogged Paddy Soil with Biochar. Journal of Soils and Sediments, 11, 930-939.
https://doi.org/10.1007/s11368-011-0376-x
[28] EMBRAPA (2006) Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro.
[29] Novais, R.F. and Smith, T.J. (1999) Fósforo em Solo e Planta em Condiçoes Tropicais. Viçosa: UFV-DPS, 62-64.
[30] Conz, R.F. (2015) Caracterização de Matérias-Primas e Biochars Para Aplicação na Agricultura. Master's Thesis, University of São Paulo/ESALQ, São Paulo, X p. 135.
[31] Crombie, K., Maek, O., Cross, A. and Sohi, S. (2015) Biochar-Synergies and Trade-Offs between Soil Enhancing Properties and C Sequestration Potential. GCB Bioenergy, 7, 1161-1175.
https://doi.org/10.1111/gcbb.12213
[32] Reichardt, K. (1988) Capacidade de Campo. Revista Brasileira de Ciência do Solo, 12, 211-216.
[33] ASTM (2008) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke. American Society for Testing and Materials (ASTM), Pennsylvania.
[34] Tedesco, M.J., Gianello, C., Bissani, C.A., Bohnen, H. and Volkweiss, S.J. (1995) Análise de Solo, Plantas e Outros Materiais. Boletim Técnico, Universidade Federal do Rio Grande do Sul, Porto Alegre. 5, 174.
[35] Sánchez-Monedero, M.A., Serramiá, N., Civantos, C.G.O., Fernández-Hernández, A. and Roig, A. (2010) Greenhouse Gas Emissions during Composting of Two-Phase Olive Mill Wastes with Different Agroindustrial by-Products. Chemosphere, 81, 18-25.
https://doi.org/10.1016/j.chemosphere.2010.07.022
[36] Wang, W., Wu, X., Chen, A., Xie, X., Wang, Y. and Yin, C. (2016) Mitigating Effects of Ex Situ Application of Rice Straw on CH4 and N2O Emissions from Paddy-Upland Coexisting System. Scientific Reports, 6, Article ID: 37402.
[37] The R Core Team (2015) R: A Language and Environment for Statistical Computing, Vienna.
[38] Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J. and Cotrufo, M.F. (2014) Biochar Addition Rate Influences Soil Microbial Abundance and Activity in Temperate Soils. European Journal of Soil Science, 65, 28-39.
https://doi.org/10.1111/ejss.12097
[39] Budai, A., Rasse, D.P., Lagomarsino, A., Lerch, T.Z. and Paruch, L. (2016) Biochar Persistence, Priming and Microbial Responses to Pyrolysis Temperature Series. Biology and Fertility of Soils, 52, 749-761.
https://doi.org/10.1007/s00374-016-1116-6
[40] Jiang, X., Denef, K., Stewart, C.E. and Cotrufo, M.F. (2016) Controls and Dynamics of Biochar Decomposition and Soil Microbial Abundance, Composition, and Carbon Use Efficiency during Long-Term Biochar-Amended Soil Incubations. Biology and Fertility of Soils, 52, 1-14.
https://doi.org/10.1007/s00374-015-1047-7
[41] Pratt, C., Redding, M., Hill, J., Shilton, A., Chung, M. and Guieysse, B. (2015) Good Science for Improving Policy: Greenhouse Gas Emissions from Agricultural Manures. Animal Reproduction Science, 55, 691-701.
https://doi.org/10.1071/AN13504
[42] Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. and Horie, T. (2009) Biochar Amendment Techniques for Upland Rice Production in Northern Laos. 1. Soil Physical Properties, Leaf SPAD and Grain Yield. Field Crops Research, 111, 81-84.
https://doi.org/10.1016/j.fcr.2008.10.008
[43] Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A. and Fisher, D.S. (2010) Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal, 102, 623-633.
https://doi.org/10.2134/agronj2009.0083
[44] Cimo, G., Kucerik, J., Berns, A.E., Schaumann, G.E., Alonzo, G. and Conte, P. (2014) Effect of Heating Time and Temperature on the Chemical Characteristics of Biochar from Poultry Manure. Journal of Agricultural and Food Chemistry, 62, 1912-1918.
https://doi.org/10.1021/jf405549z
[45] Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H. and Soja, G. (2011) Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41, 990-1000.
https://doi.org/10.2134/jeq2011.0070
[46] Novotny, E.H., de Freitas Maia, C.M.B., de Melo Carvalho, M.T. and Madari, B.E. (2015) Biochar: Pyrogenic Carbon for Agricultural Use-A Critical Review. Revista Brasileira de Ciência do Solo, 39, 321-344.
https://doi.org/10.1590/01000683rbcs20140818
[47] Deng, W., van Zwieten, L., Lin, Z., Liu, X., Sarmah, A.K. and Wang, H. (2016) Sugarcane Bagasse Biochars Impact Respiration and Greenhouse Gas Emissions from a Latosol. Journal of Soils and Sediments, 17, 632-640.
https://doi.org/10.1007/s11368-015-1347-4
[48] HeitkÖtter, J. and Marschner, B. (2015) Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma, 245-246, 56-64.
https://doi.org/10.1016/j.geoderma.2015.01.012
[49] Ronsse, F., van Hecke, S., Dickinson, D. and Prins, W. (2013) Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy, 5, 104-115.
https://doi.org/10.1111/gcbb.12018
[50] Jeong, C.Y., Dodla, S.K. and Wang, J.J. (2016) Fundamental and Molecular Composition Characteristics of Biochars Produced from Sugarcane and Rice Crop Residues and by-Products. Chemosphere, 142, 4-13.
https://doi.org/10.1016/j.chemosphere.2015.05.084
[51] Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J. and Peressotti, A. (2011) Microbial Mineralization of Biochar and Wheat Straw Mixture in Soil: A Short-Term Study. Applied Soil Ecology, 50, 45-51.
https://doi.org/10.1016/j.apsoil.2011.07.012
[52] Abruzzini, T.F. (2015) The Role of Biochar on Greenhouse Offsets, Improvement of Soil Attributes and Nutrient Use Efficiency in Tropical Soils. Ph.D. Thesis, University of São Paulo/ESALQ, São Paulo, X p.104.