Back
 AS  Vol.8 No.9 , September 2017
Mitigation of Greenhouse Gas Emissions from Tropical Soils Amended with Poultry Manure and Sugar Cane Straw Biochars
Abstract: Increases in greenhouse gases (GHG) emissions, upon changes in land use and agricultural management, lead to a search for techniques that enhance carbon residence time in soil. Pyrolysis increases the recalcitrance of organic materials and enhances their activities as physical, chemical and biological soil conditioners. Emissions of CO2, CH4 and N2O quantified from a sandy soil that was treated with three rates (12.5, 25 e 50 Mg·ha-1) of either non-pyrolysed poultry manure and sugarcane straw or biochars, pyrolysed at two contrasting temperatures (350°C and 650°C). Subsequently, the flux of the three gases was converted and compared in a standard unit (CO2eq). The added biochars, significantly reduced GHG emissions, especially CO2, relative to the non-pyrolysed materials. The greatest differences between applied rates of poultry manure, relative sugarcane straw, both to biochar and raw material, and the positive response to the increase of pyrolysis temperture, confirm the importance of raw material choice for biochar production, with recalcitrance being an important initial characteristic. Greater emissions occurred with intermediate rate of biochars (25 Mg·ha-1) amendment to the soil. These intermediate rates had higher microbial biomass, provided by an intermediate C/N ratio derived from the original soil and the biochar, promoting combined levels of labile C and oxygen availability, leading to an optimal environment for microbiota.
Keywords: CO2, CH4, N2O, Weathered Soil
Cite this paper: Vieira Novais, S. , Oliveira Zenero, M. , Frade Junior, E. , Paiva de Lima, R. and Pelegrino Cerri, C. (2017) Mitigation of Greenhouse Gas Emissions from Tropical Soils Amended with Poultry Manure and Sugar Cane Straw Biochars. Agricultural Sciences, 8, 887-903. doi: 10.4236/as.2017.89065.
References

[1]   Lamb, A., Green, R., Bateman, I., Broadmeadow, M., Bruce, T., Burney, J. and Goulding, K. (2016) The Potential for Land Sparing to Offset Greenhouse Gas Emissions from Agriculture. Nature Climate Change, 6, 488-492.
https://doi.org/10.1038/nclimate2910

[2]   Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H. and Parton, W.J. (2015) Formation of Soil Organic Matter via Biochemical and Physical Pathways of Litter Mass Loss. Nature Geoscience, 8, 776-779.
https://doi.org/10.1038/ngeo2520

[3]   Cardozo, N.P., Bordonal, R.D.O. and La Scala, N. (2016) Greenhouse Gas Emission Estimate in Sugarcane Irrigation in Brazil: Is It Possible to Reduce It, and Still Increase Crop Yield? Journal of Cleaner Production, 112, 3988-3997.
https://doi.org/10.1016/j.jclepro.2015.09.040

[4]   Madari, B.E., de Freitas Maia, C.M.B. and Novotny, E.H. (2012) Preface: Context and Importance of Biochar Research. Pesquisa Agropecuária Brasileira, 47, 1-2.
https://doi.org/10.1590/S0100-204X2012000500001

[5]   Agegnehu, G., Bass, A.M., Nelson, P.N. and Bird, M.I. (2016) Benefits of Biochar, compost and Biochar-Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Science of the Total Environment, 543, 295-306.
https://doi.org/10.1016/j.scitotenv.2015.11.054

[6]   Smith, P. (2016) Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Global Change Biology, 22, 1315-1324.
https://doi.org/10.1111/gcb.13178

[7]   Verheijen, F., Jeffery, S., Bastos, A.C., Van Der Velde, M. and Diafas, I. (2010) Biochar Application to Soils: A Critical Review of Effects on Soil Properties, Processes and Functions. JRC Scientific and technical Report.

[8]   Sánchez-García, M., Sánchez-Monedero, M.A., Roig, A., López-Cano, I., Moreno, B., Benitez, E. and Cayuela, M.L. (2016) Compost vs Biochar Amendment: A Two-Year Field Study Evaluating Soil C Build-Up and N Dynamics in an Organically Managed Olive Crop. Plant Soil, 408, 1-14.
https://doi.org/10.1007/s11104-016-2794-4

[9]   Atkinson, C.J., Fitzgerald, J.D. and Hipps, N.A. (2010) Potential Mechanisms for Achieving Agricultural Benefits from Biochar Application to Temperate Soils: A Review. Plant Soil, 337, 1-18.
https://doi.org/10.1007/s11104-010-0464-5

[10]   Lehmann, J. and Joseph, S. (2015) Biochar for Environmental Management: Science, Technology and Implementation. Routledge.

[11]   Puga, A.P., Abreu, C.A., Melo, L.C.A., Paz-Ferreiro, J. and Beesley, L. (2015) Cadmium, Lead, and Zinc Mobility and Plant Uptake in a Mine Soil Amended with Sugarcane Straw Biochar. Environmental Science and Pollution Research, 22, 17606-17614.
https://doi.org/10.1007/s11356-015-4977-6

[12]   Teichmann, I. (2014) Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany. DIW Berlin Discussion Paper, No.1406, X p. 92.
https://doi.org/10.2139/ssrn.2487765

[13]   Intergovernmental Panel on Climate Change (2015) Climate Change 2014: Mitigation of Climate Change (Vol. 3). Cambridge University Press, Cambridge.

[14]   CONAB (2013) Companhia Nacional de Abastecimento Acompanhamento da safra Brasileira: Cana de açúcar. Agosto Conab, Brasília, X p.19.

[15]   Castro, L.T., Fava Neves, M. and Fava Scare, R. (2015) Eficiência de Representação das Associaçoes de Produtores de Cana-de-açúcar no Brasil. Organizaçoes Rurais & Agroindustriais, 17, 383-397.

[16]   Orlando, F.J., Carmello, Q.A.C., Pexe, C.A. and Glória, A.M. (1994) Adubação de Soqueira de Cana-de-açúcar sob dois tipos de Despalha: Cana Crua x Cana Queimada. STAB-Açúcar, álcool e Subprodutos, Piracicaba, 12, 7-11.

[17]   Goldemberg, J., Nigro, F.E.B. and Coelho, S.T. (2008) Bioenergia no Estado de São Paulo: Situação Atual, Perspectivas e Propostas. Imprensa Oficial do Estado de São Paulo, São Paulo, X p. 152.

[18]   Melo, L.C.A., Puga, A.P., Coscione, A.R., Beesley, L., Abreu, C.A. and Camargo, O.A. (2016) Sorption and Desorption of Cadmium and Zinc in Two Tropical Soils Amended with Sugarcane-Straw-Derived Biochar. Journal of Soils and Sediments, 16, 226-234.
https://doi.org/10.1007/s11368-015-1199-y

[19]   Bennetzen, E.H., Smith, P. and Porter, J.R. (2016) Agricultural Production and Greenhouse Gas Emissions from World Regions—The Major Trends over 40 Years. Global Environmental Change, 37, 43-55.
https://doi.org/10.1016/j.gloenvcha.2015.12.004

[20]   Vieira, A.S. (2015) Gestão Ambiental: Uma Visão Multidisciplinar. Clube de Autores, São Paulo, X p. 285.

[21]   Gaunt, J. and Cowie, A. (2009) Biochar, Greenhouse Gas Accounting and Emissions Trading. In: Lehmann, J. and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 317-340.

[22]   Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J. and Joseph, S. (2010) Sustainable biochar to Mitigate Global Climate Change. Nature Communications, 1, 56.
https://doi.org/10.1038/ncomms1053

[23]   Hammond, J., Shackley, S., Sohi, S. and Brownsort, P. (2011) Prospective Life Cycle Carbon Abatement for Pyrolysis Biochar Systems in the UK. Energy Policy, 39, 2646-2655.
https://doi.org/10.1016/j.enpol.2011.02.033

[24]   Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R. and Lehmann, J. (2010) Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environmental Science & Technology, 44, 827-833.
https://doi.org/10.1021/es902266r

[25]   Wu, F., Jia, Z., Wang, S., Chang, S.X. and Startsev, A. (2013) Contrasting Effects of Wheat Straw and Its Biochar on Greenhouse Gas Emissions and Enzyme Activities in a Chernozemic Soil. Biology and Fertility of Soils, 49, 555-565.
https://doi.org/10.1007/s00374-012-0745-7

[26]   Rondon, M.A., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J. and Amezquita, E. (2006) Enhancing the Productivity of Crops and Grasses while Reducing Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical Soils. 18th World Congress of Soil Science, 9-15.

[27]   Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y. and Wu, W. (2011) Reducing CH4 and CO2 Emissions from Waterlogged Paddy Soil with Biochar. Journal of Soils and Sediments, 11, 930-939.
https://doi.org/10.1007/s11368-011-0376-x

[28]   EMBRAPA (2006) Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro.

[29]   Novais, R.F. and Smith, T.J. (1999) Fósforo em Solo e Planta em Condiçoes Tropicais. Viçosa: UFV-DPS, 62-64.

[30]   Conz, R.F. (2015) Caracterização de Matérias-Primas e Biochars Para Aplicação na Agricultura. Master's Thesis, University of São Paulo/ESALQ, São Paulo, X p. 135.

[31]   Crombie, K., Mašek, O., Cross, A. and Sohi, S. (2015) Biochar-Synergies and Trade-Offs between Soil Enhancing Properties and C Sequestration Potential. GCB Bioenergy, 7, 1161-1175.
https://doi.org/10.1111/gcbb.12213

[32]   Reichardt, K. (1988) Capacidade de Campo. Revista Brasileira de Ciência do Solo, 12, 211-216.

[33]   ASTM (2008) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke. American Society for Testing and Materials (ASTM), Pennsylvania.

[34]   Tedesco, M.J., Gianello, C., Bissani, C.A., Bohnen, H. and Volkweiss, S.J. (1995) Análise de Solo, Plantas e Outros Materiais. Boletim Técnico, Universidade Federal do Rio Grande do Sul, Porto Alegre. 5, 174.

[35]   Sánchez-Monedero, M.A., Serramiá, N., Civantos, C.G.O., Fernández-Hernández, A. and Roig, A. (2010) Greenhouse Gas Emissions during Composting of Two-Phase Olive Mill Wastes with Different Agroindustrial by-Products. Chemosphere, 81, 18-25.
https://doi.org/10.1016/j.chemosphere.2010.07.022

[36]   Wang, W., Wu, X., Chen, A., Xie, X., Wang, Y. and Yin, C. (2016) Mitigating Effects of Ex Situ Application of Rice Straw on CH4 and N2O Emissions from Paddy-Upland Coexisting System. Scientific Reports, 6, Article ID: 37402.

[37]   The R Core Team (2015) R: A Language and Environment for Statistical Computing, Vienna.

[38]   Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J. and Cotrufo, M.F. (2014) Biochar Addition Rate Influences Soil Microbial Abundance and Activity in Temperate Soils. European Journal of Soil Science, 65, 28-39.
https://doi.org/10.1111/ejss.12097

[39]   Budai, A., Rasse, D.P., Lagomarsino, A., Lerch, T.Z. and Paruch, L. (2016) Biochar Persistence, Priming and Microbial Responses to Pyrolysis Temperature Series. Biology and Fertility of Soils, 52, 749-761.
https://doi.org/10.1007/s00374-016-1116-6

[40]   Jiang, X., Denef, K., Stewart, C.E. and Cotrufo, M.F. (2016) Controls and Dynamics of Biochar Decomposition and Soil Microbial Abundance, Composition, and Carbon Use Efficiency during Long-Term Biochar-Amended Soil Incubations. Biology and Fertility of Soils, 52, 1-14.
https://doi.org/10.1007/s00374-015-1047-7

[41]   Pratt, C., Redding, M., Hill, J., Shilton, A., Chung, M. and Guieysse, B. (2015) Good Science for Improving Policy: Greenhouse Gas Emissions from Agricultural Manures. Animal Reproduction Science, 55, 691-701.
https://doi.org/10.1071/AN13504

[42]   Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. and Horie, T. (2009) Biochar Amendment Techniques for Upland Rice Production in Northern Laos. 1. Soil Physical Properties, Leaf SPAD and Grain Yield. Field Crops Research, 111, 81-84.
https://doi.org/10.1016/j.fcr.2008.10.008

[43]   Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A. and Fisher, D.S. (2010) Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal, 102, 623-633.
https://doi.org/10.2134/agronj2009.0083

[44]   Cimo, G., Kucerik, J., Berns, A.E., Schaumann, G.E., Alonzo, G. and Conte, P. (2014) Effect of Heating Time and Temperature on the Chemical Characteristics of Biochar from Poultry Manure. Journal of Agricultural and Food Chemistry, 62, 1912-1918.
https://doi.org/10.1021/jf405549z

[45]   Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H. and Soja, G. (2011) Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41, 990-1000.
https://doi.org/10.2134/jeq2011.0070

[46]   Novotny, E.H., de Freitas Maia, C.M.B., de Melo Carvalho, M.T. and Madari, B.E. (2015) Biochar: Pyrogenic Carbon for Agricultural Use-A Critical Review. Revista Brasileira de Ciência do Solo, 39, 321-344.
https://doi.org/10.1590/01000683rbcs20140818

[47]   Deng, W., van Zwieten, L., Lin, Z., Liu, X., Sarmah, A.K. and Wang, H. (2016) Sugarcane Bagasse Biochars Impact Respiration and Greenhouse Gas Emissions from a Latosol. Journal of Soils and Sediments, 17, 632-640.
https://doi.org/10.1007/s11368-015-1347-4

[48]   HeitkÖtter, J. and Marschner, B. (2015) Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma, 245-246, 56-64.
https://doi.org/10.1016/j.geoderma.2015.01.012

[49]   Ronsse, F., van Hecke, S., Dickinson, D. and Prins, W. (2013) Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy, 5, 104-115.
https://doi.org/10.1111/gcbb.12018

[50]   Jeong, C.Y., Dodla, S.K. and Wang, J.J. (2016) Fundamental and Molecular Composition Characteristics of Biochars Produced from Sugarcane and Rice Crop Residues and by-Products. Chemosphere, 142, 4-13.
https://doi.org/10.1016/j.chemosphere.2015.05.084

[51]   Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J. and Peressotti, A. (2011) Microbial Mineralization of Biochar and Wheat Straw Mixture in Soil: A Short-Term Study. Applied Soil Ecology, 50, 45-51.
https://doi.org/10.1016/j.apsoil.2011.07.012

[52]   Abruzzini, T.F. (2015) The Role of Biochar on Greenhouse Offsets, Improvement of Soil Attributes and Nutrient Use Efficiency in Tropical Soils. Ph.D. Thesis, University of São Paulo/ESALQ, São Paulo, X p.104.

 
 
Top