AS  Vol.8 No.9 , September 2017
Effects of Biochar on the Emissions of Greenhouse Gases from Sugarcane Residues Applied to Soils
Abstract: The sugar and bioethanol industry generate large amounts of filter cake and vinasse, residues that are applied to sugarcane fields as conditioners and organic fertilizers. However, these may be significant sources of greenhouse gases emissions to the atmosphere. This study assessed the impact of sugarcane straw biochar on the emissions of CO2, CH4and N2O promoted by filter cake and vinasse applied to soil, and its effects on the chemical properties and bacterial communities of a Typic Hapludox and a Quartzipsamment. A laboratory incubation was conducted for 100 days with both soils under five treatments: vinasse and filter cake amendment (FV), plus biochar at 10 (FV + B10), 20 (FV + B20) and 50 (FV + B50) Mg·ha-1, and a control. Soil pH, available P and exchangeable base contents increased with biochar added to sandy soil. Mineral N decreased with biochar addition to both soils. The FV treatment increased CO2 emissions by 5-fold and 2.4-fold in sandy and clayey soils, respectively, compared to the control. Moreover, FV +B10 increased CO2 emissions by 4% and 6.4% in sandy and clayey soils, respectively, compared to FV. Cumulative N2O emissions in FV were 537% and 125% higher in sandy and clayey soils, respectively, compared to the control. Nevertheless, increasing biochar amendment rates reduced N2O emissions from 24% to 34% in sandy soil, and from 14% to 56% in clayey soil. CH4 emissions were negligible. The effects of filter, vinasse and biochar amendments on soil amelioration were closely related to its buffering capacity. Temporal changes on bacterial community structure were more pronounced in the sandy soil compared to clayey, and indicated that N2O emission mitigation in clayey soil was directly related to biotic mechanisms, while abiotic mechanisms caused by biochar played a more important role in mitigating N2O emissions in sandy soil.
Cite this paper: Abbruzzini, T. , Oliveira Zenero, M. , de Andrade, P. , Dini Andreote, F. , Campo, J. and Pellegrino Cerri, C. (2017) Effects of Biochar on the Emissions of Greenhouse Gases from Sugarcane Residues Applied to Soils. Agricultural Sciences, 8, 869-886. doi: 10.4236/as.2017.89064.

[1]   CONAB. Acompanhamento da safra brasileira: Cana-de-acúcar, quarto levantamento, abril/2013. Companhia Nacional de Abastecimento, Brasília, 2013.

[2]   Franco, H.C.J., Pimenta, M.T.B., Carvalho, J.L.N., Magalhaes, PSG., Rossell, C.E.V., Braunbeck, O.A., Vitti, A.C., Kolln, O.T. and Neto, J.R. (2013) Assessment of Sugarcane Trash for Agronomic and Energy Purposes in Brazil. Scientia Agricola, 70, 305-312.

[3]   Prado, R.M., Caione, G. and Campos, C.N.S. (2013) Filter Cake and Vinasse as Fertilizers Contributing to Conservation Agriculture. Applied and Environmental Soil Science, 98, 1-8.

[4]   Macedo, I.C., Seabra, J.E.A. and Silva, J.E.R. (2008) Greenhouse Gases Emissions in the Production and Use of Ethanol from Sugarcane in Brazil: The 2005/2006 Averages and a Prediction for 2020. Biomass and Bioenergy, 32, 582-595.

[5]   Carmo, J.B., Filoso, S.Zotelli, L.C., Neto,E.R.S.,Pitombo, L.M., Duarte-Neto,P.J., Vargas, V.P., Andrade, C.A.,Gava, G.J.C., Rossetto, R., Cantarella, H., Neto, A.E. and Martinelli, L.A. (2013) Infield Greenhouse Gas Emissions from Sugarcane Soils in Brazil: Effects from Synthetic and Organic Fertilizer Application and Crop Trash Accumulation. Global Change Biology Bioenergy, 5, 267-280.

[6]   Oliveira, B.G., Carvalho, J.L.N., Cerri, C.E.P., Cerri, C.C. and Feigl, B.J. (2013) Soil Greenhouse Gas Fluxes from Vinasse Application in Brazilian Sugarcane Areas. Geoderma, 200-201, 77-84.

[7]   Paredes, D.S., Lessa, A.C.R.,SantAnna, S.A.C., Boddey, R.M., Urquiaga, S. and Alves, B.J.R. (2013) Nitrous Oxide Emission and Ammonia Volatilization Induced by Vinasse and N Fertilizer Application in a Sugarcane Crop at Rio de Janeiro, Brazil. Nutrient Cycling in Agroecosystems, 98, 41-55.

[8]   Glaser, B., Lehmann, J. and Zech, W. (2002) Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal a Review. Biology and Fertility of Soils, 35, 219-230.

[9]   Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. (2011) Biochar Effects on Soil Biota: A Review. Soil Biology and Biochemistry, 43, 1812-1836.

[10]   Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E. and Herbert, B.E. (2012) An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars). Environmental Science and Technology, 46, 1415-1142.

[11]   Nelissen, V., Rutting, T., Huygens, D., Staelens, J., Ruysschaert, G. and Boeckx, P. (2012) Maize Biochars Accelerate Short-Term Soil Nitrogen Dynamics in a Loamy Sand Soil. Soil Biology and Biochemistry, 55, 20-27.

[12]   Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A. and Lehmann, J. (2013) Biochar and Denitrification in Soils: When, How much and Why Does Biochar Reduce N2O Emissions? Nature Scientific Reports, 3, 1-7.

[13]   Clough, T., Condron, L., Kammann, C. and Müller, C. (2013) A Review of Biochar and Soil Nitrogen Dynamics. Agronomy Journal, 3, 275-293.

[14]   Mukherjee, A. and Lal, R. (2014) The Biochar Dilemma. Australian Journal of Soil Research, 52, 217-230.

[15]   Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. and Cantrell, K.B. (2015) Biochar Elemental Composition and Factors Influencing Nutrient Retention. In: Lehmann, J. and Joseph, S., Eds., Biochar for Environmental Management, Earthscan, London, 137-162.

[16]   Wang, J., Xiong, Z. and Kuzyakov, Y. (2016) Biochar Stability in Soil: Meta-Analysis of Decomposition and Priming Effects. Global Change Biology Bioenergy, 8, 512-523.

[17]   Fischer, D. and Glaser, B. (2012) Synergisms between Compost and Biochar for Sustainable Soil Amelioration. In: Kumar, S., Ed., Management of Organic Waste, In Tech, Rijeka and Shanghai, 167-198.

[18]   Dias, B.O., Silva, C.A., Higashikawa, F.S., Roig, A. and Sánchez-Monedero, M.A. (2010) Use of Biochar as Bulking Agent for the Composting of Poultry Manure: Effect on Organic Matter Degradation and Humification. Bioresource Technology, 101, 1239-1246.

[19]   Eykelbosh, A.J., Johnson, M.S., de Queiroz, E.S., Dalmagro, H.J. and Couto, E.G. (2014) Biochar from Sugarcane Filtercake Reduces Soil Co2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil. PLOS ONE, 9, Article ID: e98523.

[20]   Laird, D.A., Brown, R.C., Amonette, J.E. and Lehnann, J. (2009) Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuels Bioproducts and Biorefiniring, 3, 547-562.

[21]   Benke, M.B., Mermut, A.R. and Shariatmadari, H. (1999) Retention of Dissolved Organic Carbon from Vinasse by a Tropical Soil, Kaolinite, and Fe-Oxides. Geoderma, 91, 47-63.

[22]   Ribeiro, B.T., de Lima, J.M., Curi, N., de Oliveira, G.C. and Lima, P.L.T. (2011) Surface Charge of Clay Fraction as Affected by Vinasse and Phosphorus. Química Nova, 34, 5-10.

[23]   Santos, D.H., Silva, M.A., Tiritan, C.S. and Crusciol, C.A.C. (2014) The Effect of Filter Cake Enriched with Soluble Phosphorus Used as a Fertilizer on the Sugarcane Ratoons. Acta Scientiarum Agronomy, 36, 365-372.

[24]   Cantarella, H. and Rossetto, R. (2008) Fertilizers for Sugarcane. In: Cortez, L.A.B., Ed., Sugarcane Bioethanol-R&D for Productivity and Sustainability, Blucher, Sao Paulo, 405-422.

[25]   Ruzicka, J. and Hansen, E.H. (1981) Flow Injection Analysis. Wiley Interscience, New York.

[26]   Van Raij, B. and Quaggio, J.A. (1983) Métodos de Análise de Solo Para Fins de Fertilidade. Instituto Agronomico, Campinas.

[27]   Embrapa (1997) Manual de Métodos de análise de Solo. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro.

[28]   Whittaker, E.T. and Robinson, G. (1967) The Trapezoidal and Parabolic Rules. In: Whittaker, E.T. and Robinson, G., Eds., The Calculus of Observations: A Treatise on Numerical Mathematics, Cope Press, Dover, New York, 156-158.

[29]   Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.

[30]   Heuer, H., Krsek, M., Baker, P., Smalla, K. and Wellington, E.M.H. (1997) Analysis of Actinomycete Communities by Specific Amplification of Genes Encoding 16S rRNA and Gel-Electrophoretic Separation in Denaturing Gradients. Applied Environmental Microbiology, 63, 3233-3241.

[31]   McCaig, A.E., Glover, L.A. and Prosser, J.I. (2001) Numerical Analysis of Grassland Bacterial Community Structure under Different Land Management Regimes by Using 16S Ribosomal DNA Sequence Data and Denaturing Gradient Gel Electrophoresis Banding Patterns. Applied Environmental Microbiology, 67, 4554-4559.

[32]   R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

[33]   Bray, J.R. and Curtis, J.T. (1957) An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographies, 27, 325-349.

[34]   Hammer, O., Harper, D.A.T. and Rian, P.D. (2001) Past: Palaeontological Statistics Software Package for Education and Data Analysis. Version. 1.37.

[35]   Ribeiro, B.T., Lima, J.M., Curi, N. and Oliveira, G.C. (2012) Electrochemical Attributes of Soils Influenced by Sugarcane Vinasse. Bioscience Journal, 28, 25-32.

[36]   Mbagwu, J.S.C. and Piccolo, A. (1997) Effects of Humic Substances from Oxidized Coal on Soil Chemical Properties and Maize Yield. In: Drozd, J., Gonet, S.S., Senesi, N. and Weber, J., Eds., The Role of Humic Substances in the Ecosystems and in Environmental Protection, Poland Polish Society of Humic Substances, Wroclaw, 921-925.

[37]   Yoshizawa, S., Tanaka, S., Ohata, M., Mineki, S., Goto, S., Fujioka, K. and Kokubun, T. (2005) Composting of Food Garbage and Livestock Waste Containing Biomass Charcoal. Proceedings of the International Conference and Natural Resources and Environmental Management, Kuching.

[38]   Glaser, B., Haumaier, L., Guggenberger, G. and Zech, W. (2001) The Terra Preta Phenomenon: A Model for Sustainable Agriculture in the Humid Tropics. Naturwissenschaften, 88, 37-41.

[39]   Kameyama, K., Miyamoto, T., Shiono, T. and Shinogi, Y. (2012) Influence of Sugarcane Bagasse-Derived Biochar Application on Nitrate Leaching in Calcaric Dark Red Soil. Journal of Environmental Quality, 41, 1131-1137.

[40]   Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P. and Urich, T. (2014) Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLOS ONE, 9, 86-88.

[41]   Spath, A. and Konig, B. (2010) Molecular Recognition of Organic Ammonium Ions in Solution Using Synthetic Receptors. Beilstein Journal of Organic Chemistry, 6, 1-111.

[42]   Jones, D.L., Rousk, J., Edwards-Jones, G., Deluca, T.H. and Murphy, D.V. (2012) Biochar-Mediated Changes in Soil Quality and Plant Growth in a Three Year Field Trial. Soil Biology and Biochemistry, 45, 113-124.

[43]   Nelissen, V., Saha, B.K., Ruysschaert, G. and Boeckx, P. (2014) Effect of Different Biochar and Fertilizer Types on N2O and NO Emissions. Soil Biology and Biochemistry, 70, 244-255.

[44]   Farrell, M., Kuhn, T.K., Macdonald, L.M., Maddern, T.M., Murphy, D.V., Hall, P.A., Singh, B.P., Baumann, K., Krull, E.S. and Baldock, J.A. (2013) Microbial Utilisation of Biochar-Derived Carbon. Science of the Total Environment, 465, 288-297.

[45]   Zimmerman, A.R., Gao, B. and Ahn, M.-Y. (2011) Positive and Negative Carbon Mineralization Priming Effects among a Variety of Biochar-Amended Soils. Soil Biology and Biochemistry, 43, 1169-1179.

[46]   Singh, B.P. and Cowie, A.L. (2014) Long-Term Influence of Biochar on Native Organic Carbon Mineralisation in a Low-Carbon Clayey Soil. Scientific Reports, 4, 1-9.

[47]   Schulz, H., Dunst, G. and Glaser, B. (2013) Positive Effects of Composted Biochar on Plant Growth and Soil Fertility. Agronomy for Sustainable Development, 33, 817-827.

[48]   Maestrini, B., Nannipieri, P. and Abiven, S. (2015) A Meta-Analysis on Pyrogenic Organic Matter Induced Priming Effect. Global Change Biology Bioenergy, 7, 577-590.

[49]   Demisie, W., Liu, Z. and Zhang, M. (2014) Effect of Biochar on Carbon Fractions and Enzyme Activity of Red Soil.Catena, 121, 214-221.

[50]   Kolton, M., Harel, Y.M., Pasternak, Z., Graber, E.R., Elad, Y. and Cytryn, E. (2011) Impact of Biochar Application to Soil on the Root-Associated Bacterial Community Structure of Fully Developed Greenhouse Pepper Plants. Applied and Environmental Microbiology, 77, 4924-4930.

[51]   Khodadad, C.L.M., Zimmerman, A.R., Green, S.J., Uthandi, S. and Foster, J.S. (2011) Taxa-Specific Changes in Soil Microbial Community Composition Induced by Pyrogenic Carbon Amendments. Soil Biology and Biochemistry, 43, 385-392.

[52]   Quilliam, R.S., Marsden, K.A., Gertler, C., Rousk, J., DeLuca, T.H. and Jones, D.L. (2012) Nutrient Dynamics, Microbial Growth and Weed Emergence in Biochar Amended Soil Are Influenced by Time Since Application and Reapplication Rate. Agriculture, Ecosystems and Environment, 158, 192-199.

[53]   Anderson, C.R., Condron, L.M., Clough, T.J., Fiers, M., Stewart, A., Hill, R.A. and Sherlock, R.R. (2011) Biochar Induced Soil Microbial Community Change: Implications for Biogeochemical Cycling of Carbon, Nitrogen and Phosphorus. Pedobiologia, 54, 309-320.

[54]   Rondon, M.A., Lehmann, J., Ramirez, J. and Hurtado, M. (2007) Fisiological Nitrogen Fixation by Common Beans (Phaseolus vulgaris L) Increases with Biochar Additions. Biology and Fertility of Soils, 43, 699-708.