JBM  Vol.5 No.9 , September 2017
Identification of Inference Genes in Breast Cancer Network
Abstract: Complex breast cancer network constructed from experimentally verified seventy genes, by coordinating standard seven human protein and genome databases, follows hierarchical scale free features. Centrality based method of identification of inferred genes is implemented to this network and has predicted forty nine breast cancer genes, and nineteen non-breast cancer genes. As predicting good candidate genes before experimental analysis will save time and effort both. Fourteen genes out of nineteen are found to involve in various types of cancer and diseases, and five genes are engaged in non-cancer diseases. Some of the inferred genes need proper experimental investigation to understand fundamental roles of these genes in regulating breast cancer network.
Cite this paper: Chirom, K. , Ali, S. , Malik, M. , Ishrat, R. and Singh, R. (2017) Identification of Inference Genes in Breast Cancer Network. Journal of Biosciences and Medicines, 5, 29-42. doi: 10.4236/jbm.2017.59004.

[1]   Kamangar, F., Dores, G.M. and Anderson, W.F. (2006) Patterns of Cancer Incidence, Mortality, and Prevalence across Five Continents: Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World. Journal of Clinical Oncology, 24, 2137-2150.

[2]   Cai, Q., et al. (2014) Genome-Wide Association Analysis in East Asians Identifies Breast Cancer Susceptibility Loci at 1q32.1, 5q14.3 and 15q26.1. Nature Genetics, 46, 886-890.

[3]   Fatouros, M., Baltoyiannis, G. and Roukos, D.H. (2008) The Predominant Role of Surgery in the Prevention and New Trends in the Surgical Treatment of Women with BRCA1/2 Mutations. Annals of Surgical Oncology, 15, 21-33.

[4]   Murphy, J.A., Milner, T.D. and O’Donoghue, J.M. (2013) Contralateral Risk-Reducing Mastectomy in Sporadic Breast Cancer. The Lancet Oncology, 14, e262-e269.

[5]   Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T. and Mller, T. (2008) Identifying Functional Modules in Protein-Protein Interaction Networks: An Integrated Exact Approach. Bioinformatics, 24, 223-231.

[6]   Ideker, T. and Sharan, R. (2008) Protein Networks in Disease. Genome Research, 18, 644-652.

[7]   Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R. and Apweiler, R. (2004) The Gene Ontology Annotation (GOA) Database. Sharing Knowledge in Uniprot with Gene Ontology. Nucleic Acids Research, 32, D262-D266.

[8]   Palla, G., Dernyi, I., Farkas, I. and Vicsek, T. (2005) Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature, 435, 814-818.

[9]   Santo, F. (2010) Community Detection in Graphs. Physics Reports, 486, 75-174.

[10]   Pieroni, E., de la Fuente van Bentem, S., Mancosu, G., Capobianco, E., Hirt, H. and de la Fuente, A. (2008) Protein Networking. Insights into Global Functional Organization of Proteomes. Proteomics, 8, 799-816.

[11]   Barzel, B. and Barabasi, A.L. (2013) Universality in Network Dynamics. Nature Physics, 9, 673-681.

[12]   Ravasz, E., Somera, A.L., Mongru, D.A., et al. (2002) Hierarchical Organization of Modularity in Metabolic Networks. Science, 297, 1551-1555.

[13]   Girvan, M. and Newman, M.E. (2002) Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences of the United States, 99, 7821-7826.

[14]   Maslov, S. and Sneppen, K., (2002) Specificity and Stability in Topology of Protein Networks. Science, 296, 910-913.

[15]   Hernandez-Toro, J., Prieto, C. and De las Rivas, J. (2007) APID2NET: Unified Interactome Graphic Analyzer. Bioinformatics, 23, 2495-2497.

[16]   Cannistraci, C.V., Alanis-Lobato, G. and Ravasi, T. (2013) From Link-Prediction in Brain Connectomes and Protein Interactomes to the Local-Community-Paradigm in Complex Networks. Scientific Reports, 3, 1613.

[17]   Traag, V.A. and Dooren, V.P. (2011) Narrow Scope for Resolution-Limit-Free Community Detection.

[18]   Traag, V.A., Krings, G. and Dooren, V.P. (2015) Significant Scales in Community Structure. Scientific Reports, 3, 29-30.

[19]   Arzucan, O., Thuy, V., Erkan, G. and Radev, D.R. (2008) Identifying Gene-Disease Associations Using Centrality on a Literature Mined Gene-Interaction Network. Bioinformatics, 24, i277-i285.

[20]   Albert, R. and Barabasi, A.L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47.

[21]   Barabasi, A.L. and Oltvai, Z.N. (2004) Network Biology: Understanding the Cells Functional Organization. Nature Reviews Genetics, 5, 101-113.

[22]   Clauset, A., Shalizi, C.R. and Newman, M.E.J. (2009) Power-Law Distributions in Empirical Data. SIAM Review. Society for Industrial and Applied Mathematics, 51, 661-703.

[23]   Ravasz, E. and Barabsi, A.L. (2003) Hierarchical Organization in Complex Networks. Physical Review E, 67, Article ID: 026112.

[24]   Romualdo, P.S., Alexei, V. and Alessandro, V. (2001) Dynamical and Correlation Properties of the Internet. Physical Review Letters, 87, Article ID: 258701.

[25]   Shazia, N., Kalaiarasan, P., Singh, R.K.B., Husain, M. and Bamezai, R.N.K. (2015) Apoptosis Regulatory Protein-Protein Interaction Demonstrates Hierarchical Scale-Free Fractal Network. Briefings in Bioinformatics, 16, 675-699.

[26]   Shazia, N., Kalaiarasan, P., Husain, M., Singh, R.K.B. and Bamezai, R.N.K. (2016) Identification of Key Regulators and Their Controlling Mechanism in a Combinatorial Apoptosis Network: A Systems Biology Approach. Molecular BioSystems, 12, 3357-3369.

[27]   Brandes, U. (2001) A Faster Algorithm for Betweenness Centrality. The Journal of Mathematical Sociology, 25, 163-177.

[28]   Bonacich, P. (1987) Power and Centrality: A Family of Measures. American Journal of Sociology, 92, 1170-1182.

[29]   Cereda, M., Gennaro, G., Lorena, B., Fabio, I., Dominic, P., et al. (2016) Patients with Genetically Heterogeneous Synchronous Colorectal Cancer Carry Rare Damaging Germline Mutations in Immune-Related Genes. Nature Communications, 7, Article No. 12072.

[30]   Dorota, S., Valerie, S., Greco, M., Paul, M. and Martin, P. (2009) The Hepatitis Delta Virus RNA Genome Interacts with eEF1A1, p54nrb, hnRNP-L, GAPDH and ASF/SF2. Virology, 390, 71-78.

[31]   Malik, M.Z., Ali, S., Alam, M.J., Ishrat, R. and Singh, R.B. (2015) Dynamics of p53 and Wnt Cross Talk. Computational Biology and Chemistry, 59, 55-66.

[32]   Malik, M.Z., Ali, S., Singh, S.S., Ishrat, R. and Singh, R.B. (2017) Dynamical States, Possibilities and Propagation of Stress Signal. Scientific Reports, 7, Article No. 40596.

[33]   Malik, M.Z., Alam, M.J., Ishrat, R., Agarwal, S.M. and Singh, R.B. (2017) Control of Apoptosis by SMAR1. Molecular BioSystems, 13, 350-362.

[34]   Renauver, K., Menon, R., Svensson, M.A., Carlsson, J., Vogel, W., Andrn, O., Nowak, M. and Perner, S. (2014) Prognostic Significance of YWHAZ Expression in Localized Prostate Cancer. Prostate Cancer and Prostatic Diseases, 17, 310-314.

[35]   Iwao, K., Nakamori, S., Kameyama, M., Imaoka, S., Kinoshita, M., Fukui, T., Ishiguro, S., Nakamura, Y. and Miyoshi, Y. (1998) Activation of the Catenin Gene by Interstitial Deletions Involving Exon 3 in Primary Colorectal Carcinomas without Adenomatous polyposis coli Mutations. Cancer Research, 58, 1021-1026.

[36]   Chen, P.H., Chang, H., Chang, J.T. and Lin, P. (2012) Aryl Hydrocarbon Receptor in Association with RelA Modulates IL-6 Expression in Non-Smoking Lung Cancer. Oncogene, 31, 2555-2565.

[37]   Huang, C.W., Lin, C.Y., Huang, H.Y., Liu, H.W., Chen, Y.J., Shih, D.F., Chen, H.Y., Juan, C.C., Ker, C.G., Huang, C.Y.F. and Li, C.F. (2010) CKS1B Overexpression Implicates Clinical Aggressiveness of Hepatocellular Carcinomas but Notp27Kip1 Protein Turnover: An Independent Prognosticator with Potential p27Kip1-Independent Oncogenic Attributes. Annals of Surgical Oncology, 17, 907-922.

[38]   Wei, T., Li, D., Marcial, D., Khan, M., Lin, M.H., Snape, N., Ghildyal, R., Harrich, D. and Spann, K. (2014) The Eukaryoticelongation Factor 1A Is Critical for Genome Replication of the Paramyxovirus Respiratory Syncytial Virus. PLoS ONE, 9, e114447.

[39]   Ramocki, M.B., Bartnik, M., Szafranski, P., Koodziejska, K.E., Xia, Z., Bravo, J., Miller, G.S., Rodriguez, D.L., Williams, C.A., Bader, P.I. and Szczepanik, E. (2010) Recurrent Distal 7q11.23 Deletions Including HIP1 and YWHAG Identified in Patients with Intellectual Disabilities, Epilepsy, and Neurobehavioral Problems. The American Journal of Human Genetics, 87, 857-865.

[40]   Chang, W.S., Ke, H.L., Tsai, C.W., Lien, C.S., Liao, W.L., Lin, H.H., Lee, M.H., Wu, H.C., Chang, C.H., Chen, C.C. and Lee, H.Z. (2012) The Role of XRCC6 T-991C Functional Polymorphism in Renal Cell Carcinoma. Anticancer Research, 32, 3855-3860.

[41]   Stratton, M.R. and Futreal, P.A. (2004) Cancer: Understanding the Target. Nature, 430, 30.

[42]   Gkmen-Polar, Y., Neelamraju, Y., Goswami, C.P., Gu, X., Nallamothu, G., Janga, S.C. and Badve, S. (2015) Expression Levels of SF3B3 Correlate with Prognosis and Endocrine Resistance in Estrogen Receptor-Positive Breast Cancer. Modern Pathology, 28, 677-685.

[43]   Doherty, L., Sheen, M.R., Vlachos, A., Choesmel, V., O’Donohue, M.F., Clinton, C., Schneider, H.E. and Sieff, C.A. (2010) New Burger, P.E., Ball, S.E. and Niewiadomska, E., Ribosomal Protein Genes RPS10 and RPS26 Are Commonly Mutated in Diamond-Blackfan Anemia. The American Journal of Human Genetics, 86, 222-228.

[44]   Hope, N.R. and Murray, G.I. (2011) The Expression Profile of RNA-Binding Proteins in Primary and Metastatic Colorectal Cancer: Relationship of Heterogeneous Nuclear Ribonucleoproteins with Prognosis. Human Pathology, 42, 393-402.

[45]   Wu, Q., Gou, Y., Wang, Q., Jin, H., Cui, L., Zhang, Y., He, L., Wang, J., Nie, Y., Shi, Y. and Fan, D. (2011) Downregulation of RPL6 by siRNA Inhibits Proliferation and Cell Cycle Progression of Human Gastric Cancer Cell Lines. PLoS ONE, 6, e26401.

[46]   Kadam, P.D. and Chuan, H.H. (2016) Erratum to: Rectocutaneous Fistula with Transmigration of the Suture: A Rare Delayed Complication of Vault Fixation with the Sacrospinous Ligament. International Urogynecology Journal, 27, 505.

[47]   Falini, B., Mecucci, C., Tiacci, E., Alcalay, M., Rosati, R., et al. (2005) Cytoplasmic Nucleophosmin in Acute Myelogenous Leukemia with a Normal Karyotype. New England Journal of Medicine, 352, 254-266.

[48]   Gazda, H.T., Preti, M., Sheen, M.R., O’Donohue, M.F., Vlachos, A., Davies, S.M., et al. (2012) Frameshift Mutation in p53 Regulator RPL26 Is Associated with Multiple Physical Abnormalities and a Specific Preribosomal RNA Processing Defect in Diamond Blackfan Anemia. Human Mutation, 33, 1037-1044.

[49]   Lohr, J.G., Stojanov, P., Lawrence, M.S., Auclair, D., Chapuy, B., Sougnez, C., Cruz-Gordillo, P., Knoechel, B., Asmann, Y.W., Slager, S.L. and Novak, A.J. (2012) Discovery and Prioritization of Somatic Mutations in Diffuse Large B-Cell Lymphoma (DLBCL) by Whole-Exome Sequencing. PNAS, 109, 3879-3884.