JTST  Vol.3 No.1 , February 2017
Consecutive Impact Loading and Preloading Effect on Stiffness of Woven Synthetic-Fiber Rope
Abstract: We studied consecutive impact loading on woven high-modulus polyethylene rope, which is used in robotics fields. An impact tester was developed to conduct the experiments. Five consecutive impact loads (five drops) were applied to the rope and the stiffness of the loading part that corresponds to each drop was evaluated. The stiffness of the woven ropes was affected strongly by consecutive impact loading. The change in stiffness is undesirable in some applications such as in robotic fields. Therefore, we have proposed a method that can optimize changes in stiffness by applying a preload before impact testing (preload treatment). The experimental results show that preload is an efficient way to reduce changing rope stiffness. We have also proposed an empirical equation that can estimate the rope stiffness after arbitrary preload treatment, and this equation is a function of the number of drops and the static preload level. The equation can be used to determine the preload treatment conditions to stabilize the stiffness of the woven ropes before they are used in engineering fields.
Cite this paper: Sry, V. , Mizutani, Y. , Endo, G. , Suzuki, Y. and Todoroki, A. (2017) Consecutive Impact Loading and Preloading Effect on Stiffness of Woven Synthetic-Fiber Rope. Journal of Textile Science and Technology, 3, 1-16. doi: 10.4236/jtst.2017.31001.

[1]   Mori, M., Suzumori, K., Seita, S., Takahashi, M., Hosoya, T. and Kusumoto, K. (2009) Development of Very High Force Hydraulic McKibben Artificial Muscle and Its Application to Shape-Adaptable Power Hand. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, 19-23 December 2009, 1457-1462.

[2]   Kitano, S., Hirose, S., Endo, G. and Fukushima, E.F. (2013) Development of Light Weight Sprawling-Type Quadruped Robot TITAN-XIII and Its Dynamic Walking. Proceedings of IEEE International Conference on Intelligent Robots Systems, Tokyo, 3-7 November 2013, 6025-6030.

[3]   Mazumdar, A., Spencer, S.J., Hobart, C., Dabling, J., Blada, T., Dullea, K., Kuehl, M. and Buerger, S.P. (2017) Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications. IEEE Robotic and Automation Letters, 2, 554-561.

[4]   Horigome, A., Yamada, H., Endo, G., Sen, S., Hirose, S. and Fukushima, E.F. (2014) Development of a Coupled Tendon-Driven 3D Multi-Joint Manipulator. Proceedings of IEEE International Conference on Robotics & Automation, Hong Kong, May 31-June 7 2014, 5915-5920.

[5]   Wakimoto, S., Kumagai, I. and Suzumori, K. (2009) Development of Large Intestine Endoscope Changing Its Stiffness. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guillin, 19-23 December 2009, 2320-2325.

[6]   Chailleux, E. and Davies, P. (2003) Modelling the Non-Linear Viscoelastic and Viscoplastic Behaviour of Aramid Fiber Yarns. Mechanics of Time-Dependent Materials, 7, 291-303.

[7]   Chailleux, E. and Davies, P. (2005) A Non-Linear Viscoelastic and Viscoplastic Model for the Behavior of Polyester Fibers. Mechanics Time-Dependent Materials, 9, 147-160.

[8]   Baltussen, J.J.M. and Northolt, M.G. (1999) The Stress and Sonic Modulus versus Strain Curve of Polymer Fibers with Yield. Polymer, 40, 6113-6124.

[9]   Northolt, M.G. (1980) Tensile Deformation of Poly (P-Phenylene Terephalamide) Fbers, an Experimental and Theoretical Analysis. Polymer, 21, 1199-1204.

[10]   Northolt, M.G., Baltussen, J.J.M. and Schaffers-Korff, B. (1995) Yielding and Hysteresis of Polymer Fibers. Polymer, 36, 3485-3492.

[11]   Nikonov, A., Saprunov, I., Zupancic, B. and Emri, I. (2011) Influence of Moisture on Functional Properties of Climbing Ropes. Journal of Impact Engineering, 38, 900-909.

[12]   Kwan, C.T., Marine, J.D., Devlin, P., Tan, P.L. and Huang, K. (2012) Stiffness Modelling, Testing, and Global Analysis for Polyester Mooring. Proceedings of the ASME 2012 31st International Conference on Ocean Offshore Arctic Engineering, Rio de Janeiro, 1-6 July 2012, 777-785.

[13]   Davies, P., Reaud, Y., Dussud, L. and Woerther, P. (2011) Mechanical Behavior of HMPE and Aramid Fiber Ropes for Deep Sea Handling Operations. Journal of Ocean Engineering, 38, 2208-2214.

[14]   Casey, N.F. and Banfield, S.J. (2002) Full-Scale Fiber Deepwater Mooring Ropes: Advancing the Knowledge of Spliced Systems. Proceedings of Offshore Technology Conference, Houston, 6-9 May 2002, 2189-2201.

[15]   Liu, H., Huang, W., Lian, Y. and Li, L. (2014) An Experimental Investigation on Nonlinear Behaviors of Synthetic Fiber Ropes for Deepwater Moorings under Cyclic Loading. Journal of Applied Ocean Research, 45, 22-32.

[16]   Flory, J.F., Ahjem, V. and Banfield, S.J. (2007) A New Method of Testing for Change-in-Length Properties of Large Fiber Rope Deepwater Mooring Lines. Proceedings of Offshore Technology Conference, Houston, 30 April-3 May 2007, 1087-1096.

[17]   Flory, J.F. and Ahjem, V. (2013) Testing Polyester Fiber Rope for Six Change-in-Length Properties (6CILP). Proceedings of IEEE Conference, Bergen, 10-14 June 2013, 1-10.

[18]   Flory, J.F., Banfield, S.P. and Petruska, D.J. (2004) Defining, Measuring, and Calculating the Properties of Fiber Rope Deepwater Mooring Lines. Proceedings of Offshore Technology Conference, Houston, 3-6 May 2004, 151-164.

[19]   Ramasamy, M. and Sundaramoorthy, S. (2008) PID Controller Tuning for Desired Closed-Loop Responses for SISO Systems Using Impulse Response. Journal of Computer and Chemical Engineering, 32, 1773-1788.

[20]   Suzuki, T., Otsuka, H., Akahori, W., Bando, Y. and Okuno, H.G. (2017) Influence of Different Impulse Response Measurement Signals on Music-Based Sound Source Localization. Journal of Robotics and Mechatronics, 29, 72-82.

[21]   Hidayat, E. and Medvedev, A. (2012) Laguerre Domain Identification of Continuous Linear Time-Delay Systems from Impulse Response Data. Journal of Automatica, 48, 2902-2907.

[22]   Francois, M. and Davies, P. (2000) Fiber Rope Deepwater Mooring: A Practical Model for the Analysis of Polyester Mooring Systems. Proceedings of Oil Gas Conference, Rio de Janeiro, 16 October 2000.