Back
 AJPS  Vol.8 No.9 , August 2017
Analysis of Simple Sequence Repeats Information from Floral Expressed Sequence Tags Resources of Papaya (Carica papaya L.)
Abstract: Papaya (Carica papaya L.) is one of the most economically, medicinally and nutritionally important tropical fruit crops. Expressed sequence tags (ESTs) derived simple sequence repeat (SSR) markers are more valuable as they are derived from conserved genic portion. Development of EST-SSRs markers through in silico approach is cheaper, less time consuming and labour-intensive. In this study, we aimed to mine SSRs and developed EST-SSR primers from papaya floral ESTs. A total of 75,846 papaya floral ESTs were downloaded from public database National Centre for Biotechnology Information (NCBI). A total of 26,039 floral unigenes (7961 contigs and 18,078 singletons) were generated after assembly of these ESTs. From these floral unigenes, 433,782 perfect SSRs, 204,968 compound SSRs and 6061 imperfect SSRs were mined, respectively. In perfect SSRs, mononucleotide repeats were most abundant (94.7%) followed by tri- (3.1%) and di-nucleotide repeats (1.7%). The frequencies of tetra-, hexa- and penta-nucleotide repeats accounted for only (0.17%), (0.04%) and (0.03%), respectively. In mononucleotide repeats, the most abundant motif was A/T (69.3%) and in di- and tri-nucleotide repeats were AG/CT (61%) and AAG/CTT (31%), respectively. In imperfect SSRs, mononucleotide repeats (56.5%) were most abundant. 176 different types of motifs were identified. A total of 3807 primer pairs for floral papaya ESTs were successfully designed. These developed EST-SSR primers are being used for the genetic improvement of papaya such as study of cross-transferability across genera/species, evaluation of genetic diversity, and identification of sex-specific markers. These EST derived SSRs can also be used in filling gaps in existing linkage maps in papaya.
Cite this paper: Priyanka, P. , Kumar, D. , Yadav, A. , Yadav, K. and Dwivedi, U. (2017) Analysis of Simple Sequence Repeats Information from Floral Expressed Sequence Tags Resources of Papaya (Carica papaya L.). American Journal of Plant Sciences, 8, 2315-2331. doi: 10.4236/ajps.2017.89155.
References

[1]   Araujo, F.S., Carvalho, C.R. and Clarindo, W.R. (2010) Genome Size, Base Composition and Karyotype of Carica papaya L. Nucleus, 53, 25-31.
https://doi.org/10.1007/s13237-010-0007-8

[2]   Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA Content of Some Important Plant Species. Plant Molecular Biology Reporter, 93, 208-219.
https://doi.org/10.1007/BF02672069

[3]   Damasceno-Junior, P.C., Costa, F.R., Pereira, T.N.S., Freitas Neto, M. and Pereira, M.G. (2009) Karyotype Determination in Three Caricaceae Species Emphasizing the Cultivated Form (C. papaya L.). Caryologia, 62, 10-15.
https://doi.org/10.1080/00087114.2004.10589660

[4]   Organization for Economic Co-Operation and Development (OECD) (2005) Consensus Document on the Biology of Papaya (Carica papaya), OECD Environment, Health and Safety Publications, Series on Harmonization of Regulatory Oversight in Biotechnology No. 33, France.

[5]   Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V. and Lewis, K.L. (2008) The Draft Genome of the Transgenic Tropical Fruit Tree Papaya (Carica papaya Linnaeus). Nature, 452, 991-996.
https://doi.org/10.1038/nature06856

[6]   Morton, J.F. and Miami, F.L. (1987) Papaya. In: Morton, J., Ed., Fruits of Warm Climates, Miami, 336-346.

[7]   Aravind, G., Bhowmik, D., Duraivel, S. and Harish, G. (2013) Traditional and Medicinal Uses of Carica papaya. Journal of Medicinal Plants Studies, 1, 7-15.

[8]   Urasaki, N., Tokumoto, M., Ban, Y., Kayano, T., Tanaka, H., Oku, H., Chinen, I. and Terauchi, R. (2002) A Male and Hermaphrodite Specific RAPD Marker for Papaya (Carica papaya L.).Theoretical and Applied Genetics, 104, 281-285.
https://doi.org/10.1007/s001220100693

[9]   Eustice, M., Yu, Q., Lai, C.W., Hou, S., Thimmapuram, J., Liu, L., Alam, M., Moore, P.H., Presting, G.G. and Ming, R. (2008) Development and Application of Microsatellite Markers for Genomic Analysis of Papaya. Tree Genetics and Genomes, 4, 333-341.
https://doi.org/10.1007/s11295-007-0112-2

[10]   Ma, H., Moore, P.H., Liu, Z., Kim, M.S., Yu, Q., Fitch, M.M., Sekiota, T., Paterson, A.H. and Ming, R. (2004) High Density Linkage Mapping Revealed Suppression of Recombination at the Sex Determination Locus in Papaya. Genetics, 166, 419-436.
https://doi.org/10.1534/genetics.166.1.419

[11]   Bedoya, G.C. and Nunez, V. (2007) A SCAR Marker for the Sex Types Determination in Colombian Genotypes of Carica papaya. Euphytica, 153, 215-220.
https://doi.org/10.1007/s10681-006-9256-7

[12]   Li, Y.C., Korol, A.B., Fahima, T. and Nevo, E. (2004) Microsatellites within Genes: Structure, Function and Evolution. Molecular Biology and Evolution, 21, 991-1007.
https://doi.org/10.1093/molbev/msh073

[13]   Thiel, T., Michalek, W., Varshney, R.K. and Graner, A. (2003) Exploiting EST Databases for the Development and Characterization of Gene-Derived SSR-Markers in Barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106, 411-422.
https://doi.org/10.1007/s00122-002-1031-0

[14]   Tautz, D. (1989) Hypervariability of Simple Sequences as General Source for Polymorphic DNA Markers. Nucleic Acids Research, 17, 6463-6472.
https://doi.org/10.1093/nar/17.16.6463

[15]   Litt, M. and Luty, J.A. (1989) A Hypervariable Microsatellite Revealed by in Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene. American Journal of Human Genetics, 44, 397-401.

[16]   Edwards, A., Civitello, A., Hammond, H.A. and Caskey, C.T. (1991) DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats. American Journal of Human Genetics, 49, 746-756.

[17]   Toth, G., Gaspari, Z. and Jurka, J. (2000) Microsatellites in Different Eukaryotic Genomes: Survey and Analysis. Genome Research, 10, 967-981.
https://doi.org/10.1101/gr.10.7.967

[18]   Kalia, R.K., Rai, M.K., Kalia, S., Singh, R. and Dhawan, A.K. (2011) Microsatellite Markers: An Overview of the Recent Progress in Plants. Euphytica, 177, 309-334.
https://doi.org/10.1007/s10681-010-0286-9

[19]   Powell, W., Machray, G.C. and Provan, J. (1996) Polymorphism Revealed by Simple Sequence Repeats. Trends in Plant Science, 1, 215-222.

[20]   Zane, L., Bargelloni, L. and Patarnello, T. (2002) Strategies for Microsatellite Isolation: A Review. Molecular Ecology, 11, 1-16.
https://doi.org/10.1046/j.0962-1083.2001.01418.x

[21]   Levinson, G. and Gutman, G.A. (1987) Slipped-Strand Mispairing: A Major Mechanism for DNA Sequence Evolution. Molecular Biology and Evolution, 4, 203-221.

[22]   Katti, M.V., Ranjekar, P.K. and Gupta, V.S. (2001) Differential Distribution of Simple Sequence Repeats in Eukaryotic Genome Sequences. Molecular Biology and Evolution, 18, 1161-1167.
https://doi.org/10.1093/oxfordjournals.molbev.a003903

[23]   Innan, H., Terauchi, R. and Miyashita, N.T. (1997) Microsatellite Polymorphism in Natural Populations of the Wild Plant Arabidopsis thaliana. Genetics, 146, 1441-1452.

[24]   Senan, S., Kizhakayil, D., Sasikumar, B. and Sheeja, T.E. (2014) Methods for Development of Microsatellite Markers: An Overview. Notulae Scientia Biologicae, 6, 1-13.

[25]   Nakatsuji, R., Hashida, T., Matsumoto, N., Tsuro, M., Kubo, N. and Hirai, M. (2011) Development of Genomic and EST-SSR Markers in Radish (Raphanus sativus L.). Breeding Science, 61, 413-419.
https://doi.org/10.1270/jsbbs.61.413

[26]   Bhattacharyya, U., Pandey, S.K. and Dasgupta, T. (2014) Identification of EST-SSRs and FDM in Sesame (Sesamum indicum L.) through Data Mining. Scholarly Journal of Agricultural Science, 4, 60-69.

[27]   Gupta, P.K., Rustgi, S., Sharma, S., Singh, R., Kumar, N. and Balyan, H.S. (2003) Transferable EST-SSR Markers for the Study of Polymorphism and Genetic Diversity in Bread Wheat. Molecular Genetics Genomics, 270, 315-323.
https://doi.org/10.1007/s00438-003-0921-4

[28]   Varshney, R.K., Thiel, T., Stein, N., Langridge and Graner, A. (2002) In Silico Analysis on Frequency and Distribution of Microsatellites in ESTs of Some Cereal Species. Cell Molecular Biology Letter, 7, 537-546.

[29]   Anjali, N., Dharan, S., Nadiya, F. and Sabu, K.K. (2015) Development of EST-SSR Markers to Assess Genetic Diversity in Elettaria cardamomum Maton. International Journal of Applied Science Biotechnology, 3, 188-192.

[30]   Haq, S.U., Jain, R., Sharma, M., Kachhwaha, S. and Kothari, S.L. (2014) Identification and Characterization of Microsatellites in Expressed Sequence Tags and Their Cross Transferability in Different Plants. International Journal of Genomics, 2014, Article ID: 863948.
https://doi.org/10.1155/2014/863948

[31]   Bhati, J., Sonah, H., Jhang, T., Singh, N.K. and Sharma, T.R. (2010) Comparative Analysis and EST Mining reveals High Degree of Conservation among Five Brassicaceae Species. Comparative and Functional Genomics, 2010, Article ID: 520238.

[32]   Studer, B., Kolliker, R., Muylle, H., Asp, T., Frei, U., Roldan-Ruiz, I., Barre, P., Tomaszewski, C., Meally, H., Barth, S., Skot, L., Armstead, I.P., Dolstra, O. and Lubberstedt, T. (2010) EST-Derived SSR Markers Used as Anchor Loci for the Construction of A Consensus Linkage Map in Ryegrass (Lolium spp.). BMC Plant Biology, 10, 177.
https://doi.org/10.1186/1471-2229-10-177

[33]   Jesus, O.N.D., Freitas, J.P.X.D., Dantas, J.L.L. and Oliveira, E.J.D. (2013) Use of Morpho-Agronomic Traits and DNA Profiling for Classification of Genetic Diversity in Papaya. Genetics and Molecular Research, 12, 6646-6663.
https://doi.org/10.4238/2013.July.11.8

[34]   Sengupta, S., Das, B., Prasad, M., Acharyya, P. and Ghose, T.K. (2013) A Comparative Survey of Genetic Diversity among a Set of Caricaceae Accessions Using Microsatellite Markers. Springer Plus, 2, 345.
https://doi.org/10.1186/2193-1801-2-345

[35]   Oliveira, E.J.D., Silva, A.D.S., Carvalho, F.M.D., Santos, L.F.D., Costa, J.L., Amorim, V.B.D.O. and Dantas, J.L.L. (2010) Polymorphic Microsatellite Marker Set for Carica papaya L. and Its Use in Molecular-Assisted Selection. Euphytica, 173, 279-287.
https://doi.org/10.1007/s10681-010-0150-y

[36]   Castelo, A.T., Martins, W.S. and Gao, G.R. (2002) Tandem Repeat Occurrence Locator. Bioinformatics, 18, 634-636.
https://doi.org/10.1093/bioinformatics/18.4.634

[37]   Kofler, R., Schlotterer, C. and Lelley, T. (2007) SciRoKo: A New Tool for Whole Genome Microsatellite Search and Investigation. Bioinformatics, 23, 1683-1685.
https://doi.org/10.1093/bioinformatics/btm157

[38]   Faircloth, B.C. (2008) Msatcommander: Detection of Microsatellite Repeat Arrays and Automated, Locus-Specific Primer Design. Molecular Ecology Resources, 8, 92-94.
https://doi.org/10.1111/j.1471-8286.2007.01884.x

[39]   Wang, J., Chen, C., Na, J.K., Yu, Q., Hou, S., Paull, R.E., Moore, P.H., Alam, M. and Ming, R. (2008) Genome-Wide Comparative Analysis of Microsatellite in Papaya. Tropical Plant Biology, 1, 278-292.
https://doi.org/10.1007/s12042-008-9024-z

[40]   Zeng, F., Yu, Q., Hou, S., Moore, P.H., Alam, M. and Ming, R. (2014) Features of Transcriptome in Trioecious Papaya Revealed by a Large-Scale Sequencing of ESTs and Comparative Analysis in Higher Plants. Plant Omics Journal, 7, 450-460.

[41]   Falgueras, J., Lara, A.J., Fernandez-Pozo, N., Canton, F.R., Perez-Trabado, G. and Claros, M.G. (2010) SeqTrim: A High-Throughput Pipeline for Pre-Processing Any Type of Sequence Read. BMC Bioinformatics, 11, 38.
https://doi.org/10.1186/1471-2105-11-38

[42]   Fluch, S., Burg, A., Kopecky, D., Homolka, A., Spiess, N. and Vendramin, G.G. (2011) Characterization of Variable EST SSR Markers for Norway Spruce (Piceaabies L.). BMC Research Notes, 4, 401.
https://doi.org/10.1186/1756-0500-4-401

[43]   Rozen, S. and Skaletsky, H.J. (2000) Primer3 on the WWW for General Users and for Biologist Programmers. In: Krawetz, S. and Misener, S., Eds., Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, Totowa, 365-386.

[44]   Shi, J., Huang, S., Fu, D., Yu, J., Wang, X., Hua, W., Liu, S., Liu, G. and Wang, H. (2013) Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species. PLoS ONE, 8, e59988.
https://doi.org/10.1371/journal.pone.0059988

[45]   Vidal, N.M., Grazziotin, A.L., Ramos, H.C.C., Pereira, M.G. and Venancio, T.M. (2014) Development of a Gene-Centered SSR Atlas as a Resource for Papaya (Carica papaya) Marker-Assisted Selection and Population Genetic Studies. PLoS ONE, 9, e112654.
https://doi.org/10.1371/journal.pone.0112654

[46]   Varshney, R.K., Graner, A. and Sorrells, M.E. (2005) Genic Microsatellite Markers in Plants: Features and Applications. Trends Biotechnology, 23, 48-55.

[47]   Mishra, R.K., Gangadhar, B.H., Nookaraju, A., Kumar, S. and Park, S.W. (2012) Development of EST-Derived SSR Markers in Pea (Pisum sativum) and Their Potential Utility for Genetic Mapping and Transferability. Plant Breeding, 131, 118-124.
https://doi.org/10.1111/j.1439-0523.2011.01926.x

[48]   Adawy, S.S., Mokhtar, M.M., Alsamman, A.M. and Sakr, M.M. (2013) Development of Annotated EST-SSR Database in Olive (Olea europaea). International Journal of Science and Research, 4, 1063-1073.

[49]   Sahu, J., Sarmah, R., Dehury, B., Sarma, K., Sahoo, S., Sahu, M., Barooah, M., Modi, M.K. and Sen, P. (2012) Mining for SSRs and FDMs from Expressed Sequence Tags of Camellia sinensis. Bioinformation, 8, 260-266.
https://doi.org/10.6026/97320630008260

[50]   Cai, C., Yang, Y., Cheng, L., Tong, C. and Feng, J. (2015) Development and Assessment of EST SSR Marker for the Genetic Diversity among Tobaccos (Nicotiana tabacum L.). Russian Journal of Genetics, 51, 591-600.
https://doi.org/10.1134/S1022795415020064

[51]   Cheng, Y., Yang, Y., Wang, Z., Qi, B., Yin, Y. and Li, H. (2015) Development and Characterization of EST-SSR Markers in Taxodium “zhongshansa”. Plant Molecular Biology Reporter, 33, 1804-1814.
https://doi.org/10.1007/s11105-015-0875-9

[52]   Wohrmann, T. and Weising, K. (2011) In Silico Mining for Simple Sequence Repeat Loci in a Pineapple Expressed Sequence Tag Database and Cross-Species Amplification of EST-SSR Markers Across Bromeliaceae. Theoretical and Applied Genetics, 123, 635-647.
https://doi.org/10.1007/s00122-011-1613-9

[53]   Ding, X., Jia, Q., Luo, X., Zhang, L., Cong, H., Liu, G. and Bai, C. (2015) Development and Characterization of Expressed Sequence Tag-Derived Simple Sequence Repeat Markers in Tropical Forage Legume Stylosanthes guianensis (Aubl.) Sw. Molecular Breeding, 35, 202.
https://doi.org/10.1007/s11032-015-0370-x

[54]   Chand, S.K., Nanda, S., Rout, E. and Joshi, R.K. (2015) Mining, Characterization and Validation of EST Derived Microsatellites from the Transcriptome Database of Allium sativum L. Bioinformation, 11, 145-150.
https://doi.org/10.6026/97320630011145

[55]   Tripathi, K.P., Roy, S., Maheshwari, N., Khan, F., Meena, A. and Sharma, A. (2009) SSR Polymorphism in Artemisia Annua: Recognition of Hotspots for Dynamics Mutation. Plant Omics Journal, 2, 228-237.

[56]   Singh, S., Gupta, S., Mani, A. and Chaturvedi, A. (2012) Mining and Gene Ontology Based Annotation of SSR Markers from Expressed Sequence Tags of Humulus lupulus. Bioinformation, 8, 114-122.
https://doi.org/10.6026/97320630008114

[57]   Aggarwal, R.K., Hendre, P.S., Varshney, R.K., Bhat, P.R., Krishnakumar, V. and Singh, L. (2007) Identification, Characterization and Utilization of EST-Derived Genic Microsatellite Markers for Genome Analyses of Coffee and Related Species. Theoretical and Applied Genetics, 114, 359-372.
https://doi.org/10.1007/s00122-006-0440-x

[58]   Mishra, R.K., Gangadhar, B.H., Yu, J.W., Kim, D.H. and Park, S.W. (2011) Development and Characterization of EST Based SSR Markers in Madagascar Periwinkle (Catharanthus roseus) and Their Transferability in Other Medicinal Plants. Plant Omics Journal, 4, 154-162.

[59]   Boccacci, P., Beltramo, C., Prando, M.A.S., Lembo, A., Sartor, C, Mehlenbacher, S.A., Botta, R. and TorelloMarinoni, D. (2015) In Silico Mining, Characterization and Cross-Species Transferability of EST-SSR Markers for European Hazelnut (Corylus avellana L.). Molecular Breeding, 35, 21.
https://doi.org/10.1007/s11032-015-0195-7

[60]   Teshome, A., Bryngelsson, T., Dagne, K. and Geleta, M. (2015) Assessment of Genetic Diversity in Ethiopian Field Pea (Pisum sativum L.) Accessions with Newly Developed EST-SSR Markers. BMC Genetics, 16, 102.
https://doi.org/10.1186/s12863-015-0261-5

[61]   He, X., Zheng, J., Zhou, J., He, K., Shi, S. and Wang, B. (2015) Characterization and Comparison of EST-SSRs in Salix, Populus, and Eucalyptus. Tree Genetics and Genomes, 11, 820.
https://doi.org/10.1007/s11295-014-0820-3

[62]   Babu, B.K., Pandey, D., Agrawal, P.K., Sood, S. and Kumar, A. (2014) In Silico Mining, Type and Frequency Analysis of Genic Microsatellites of Finger Millet (Eleusine coracana (L.) Gaertn.): A Comparative Genomic Analysis of NBS-LRR Regions of Finger Millet with Rice. Molecular Biology Reports, 41, 3081-3090.
https://doi.org/10.1007/s11033-014-3168-8

[63]   Morgante, M., Hanafey, M. and Powell, W. (2002) Microsatellites are Preferentially Associated with Nonrepetitive DNA in Plant Genomes. Nature Genetics, 30, 194-200.
https://doi.org/10.1038/ng822

 
 
Top