[1] Eriksen, J.L., Wszolek, Z. and Petrucelli, L. (2005) Molecular Pathogenesis of Parkinson Disease. Archives of Neurology, 62, 353-357. https://doi.org/10.1001/archneur.62.3.353
[2] Dehay, B., Bourdenx, M., Gorry, P., Przedborski, S., Vila, M., Hunot, S., Singleton, A., Olanow, C.W., Merchant, K.M., Bezard, E., Petsko, G.A. and Meissner, W.G. (2015) Targeting α-Synuclein for Treatment of Parkinson’s Disease: Mechanistic and Therapeutic Considerations. The Lancet Neurology, 14, 855-866. https://doi.org/10.1016/S1474-4422(15)00006-X
[3] Roberts, H.L. and Brown, D.R. (2015) Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein. Biomolecules, 5, 282-305. https://doi.org/10.3390/biom5020282
[4] Sulzer, D., Bogulavsky, J., Larsen, K.E., Behr, G., Karatekin, E., Kleinman, M.H., Turro, N., Krantz, D., Edwards, R.H., Greene, L.A. and Zecca, L. (2000) Neuromelanin Biosynthesis Is Driven by Excess Cytosolic Catecholamines Not Accumulated by Synaptic Vesicles. Proceedings of the National Academy of Sciences of the USA, 97, 11869-11874.
https://doi.org/10.1073/pnas.97.22.11869
[5] Graham, D.G. (1978) Oxidative Pathway for Catecholamines in the Genesis of Neuromelanin and Cytotoxic Quinones. Molecular Pharmacology, 14, 633-643.
[6] Dias, V., Junn, E. and Mouradian, M.M. (2013) The Role of Oxidative Stress in Parkinson’s Disease. Journal of Parkinson’s Disease, 3, 461-491.
[7] Miyazaki, I. and Asanuma, M. (2008) Dopaminergic Neuron-Specific Oxidative Stress Caused by Dopamine Itself. Acta Medica Okayama, 62, 141-150.
[8] Cooper, A.J.L. and Kristal, B.S. (1997) Multiple Roles of Glutathione in the Central Nervous System. Biological Chemistry, 378, 793-802.
[9] Hall, A. (1999) The Role of Glutathione in the Regulation of Apoptosis. European Journal of Clinical Investigation, 29, 238-245. https://doi.org/10.1046/j.1365-2362.1999.00447.x
[10] Asanuma, M., Miyazaki, I., Diaz-Corrales, F.J. and Ogawa, N. (2004) Quinone Formation as Dopaminergic Neuron-Specific Oxidative Stress in the Pathogenesis of Sporadic Parkinson’s Disease and Neurotoxin-Induced Parkinsonism. Acta Medica Okayama, 58, 221-233.
[11] Higashi, Y., Asanuma, M., Miyazaki, I., Haque, M.E., Fujita, N., Tanaka, K. and Ogawa, N. (2002) The p53-Activated Gene, PAG608, Requires a Zinc Finger Domain for Nuclear Localization and Oxidative Stress-Induced Apoptosis. Journal of Biological Chemistry, 277, 42224-42232. https://doi.org/10.1074/jbc.M203594200
[12] Tanaka, K., Fujita, N., Higashi, Y. and Ogawa, N. (2002) Neuroprotective and Antioxidant Properties of FKBP-Binding Immunophilin Ligands Are Independent on the FKBP12 Pathway in Human Cells. Neuroscience Letters, 330, 147-150.
[13] Clark, J., Clore, E.L., Zheng, K., Adame, A., Masliah, E. and Simon, D.K. (2010) Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α Synuclein Overexpressing Mice. PLOS One, 5, 1-10. https://doi.org/10.1371/journal.pone.0012333
[14] Dawson, T.M. and Dawson, V.L. (2003) Molecular Pathway of Neurodegeneration in Parkinson’s Disease. Science, 302, 819-822. https://doi.org/10.1126/science.1087753
[15] Scarlata, S. and Golebiewska, U. (2014) Linking Alpha-Synuclein Properties with Oxidation: A Hypothesis on a Mechanism Underling Cellular Aggregation. Journal of Bioenergetics and Biomembranes, 46, 93-98. https://doi.org/10.1007/s10863-014-9540-5
[16] Dringen, R. and Hamprecht, B. (1999) N-Acetylcysteine, But Not Methione or 2-Oxothiazolidine-4-Carboxylate, Serves as Cysteine Donor for the Synthesis of Glutathione in Cultured Neurons Derived from Embryonal Rat Brain. Neuroscience Letters, 259, 79-82.
[17] Banaclocha, M.M. (2000) N-Acetylcysteine Elicited Increase in Complex I Activity in Synaptic Mitochondria from Aged Mice: Implications for Treatment of Parkinson’s Disease. Brain Research, 859, 173-175.
[18] Xu, B., Wu, S.W., Lu, C.W., Deng, Y., Liu, W., Wei, Y.G., Yang, T.Y. and Xu, Z.F. (2013) Oxidative Stress Involvement in Manganese-Induced Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures. Toxicology, 305, 71-78.