Back
 OJCE  Vol.7 No.3 , September 2017
The Influence of Metakaolin from Saaba (Burkina Faso) over Physico-Mechanical and Durability Properties of Mortars
Abstract: The paper evaluates the feasibility of reducing clinker in the Portland Cement production using local metakaolin in Burkina Faso. Standardized testing methods have been used for this purpose, and experiments were performed on mortar prisms containing different amounts of metakaolin. Important results about the physical, mechanical and durability characterization of blended mortars were carried out in this study. The obtained results are discussed based on available literature data. These results have shown increased physical and durability properties for blended mortars. Although the mechanical strengths remained relatively low for higher MK incorporations, the latter grow to surpass these of PC mortars (the reference) at 28, 56 and 90 days of curing. The results in the paper, have confirmed the possibility of using metakaolin to partially substitute cement, a possibility to reduce the CO2 production by the cement industry in Burkina Faso.
Cite this paper: Ntimugura, F. , Sore, S. , Bello, L. and Messan, A. (2017) The Influence of Metakaolin from Saaba (Burkina Faso) over Physico-Mechanical and Durability Properties of Mortars. Open Journal of Civil Engineering, 7, 389-408. doi: 10.4236/ojce.2017.73027.
References

[1]   The, S.H., Wiedmann, T., Castel, A. and de Burgh, J. (2017) Hybrid Life Cycle Assessment of Greenhouse Gas Emissions from Cement, Concrete and Geopolymer Concrete in Australia. Journal of Cleaner Production, 152, 312-320.

[2]   Millogo, Y., Hajjaji, M., Ouedraogo, R. and Gomina, M. (2008) Cement-Lateritic Gravels Mixtures: Microstructure and Strength Characteristics. Construction and Building Materials, 22, 2078-2086.

[3]   Millogo, Y., Morel, J.-C., Traoré, K. and Ouedraogo, R. (2012) Microstructure, Geotechnical and Mechanical Characteristics of Quicklime-Lateritic Gravels Mixtures Used in Road Construction. Construction and Building Materials, 26, 663-669.

[4]   Ouedraogo, E., Coulibaly, O., Ouedraogo, A. and Messan, A. (2015) Mechanical and Thermophysical Properties of Cement and/or Paper (Cellulose) Stabilized Compressed Clay Bricks. Journal of Materials and Engineering Structures, 2, 68-76.

[5]   Pare, S., et al. (2012) Heavy Metal Removal from Aqueous Solutions by Sorption Using Natural Clays from Burkina Faso. African Journal of Biotechnology, 11, 10395-10406.
https://doi.org/10.5897/AJB11.3735

[6]   Kabre, T.S., Traore, K. and Blanchart, P. (1998) Mineralogy of Clay Raw Material from Burkina Faso and Niger Used for Ceramic Wares. Applied Clay Science, 12, 463-477.

[7]   Ilic, B.R., Mitrovic, A.A. and Milicic, L.R. (2010) Thermal Treatment of Kaolin Clay to Obtain Metakaolin. Hemijska Industrija, 64, 351-356.
https://doi.org/10.2298/HEMIND100322014I

[8]   Zhang, M.H. and Malhotra, V.M. (1995) Characteristics of a Thermally Activated Alumino-Silicate Pozzolanic Material and Its Use in Concrete. Cement and Concrete Research, 25, 1713-1725.

[9]   Kostuch, J.A., Walters, V. and Jones, T.R. (2000) High Performance Concretes Incorporating Metakaolin: A Review. Concrete, 2, 1799-1811.

[10]   Moodi, F., Ramezanianpour, A.A. and Safavizadeh, A.S. (2011) Evaluation of the Optimal Process of Thermal Activation of Kaolins. Scientia Iranica, 18, 906-912.

[11]   Shvarzman, A., Kovler, K., Grader, G.S. and Shter, G.E. (2003) The Effect of Dehydroxylation/Amorphization Degree on Pozzolanic Activity of Kaolinite. Cement and Concrete Research, 33, 405-416.

[12]   Murat, M. (1983) Hydration Reaction and Hardening of Calcined Clays and Related Minerals. I. Preliminary Investigation on Metakaolinite. Cement and Concrete Research, 13, 259-266.

[13]   Murat, M. (1983) Hydration Reaction and Hardening of Calcined Clays and Related Minerals: II. Influence of Mineralogical Properties of the Raw-Kaolinite on the Reactivity of Metakaolinite. Cement and Concrete Research, 13, 511-518.

[14]   Murat, M. and Comel, C. (1983) Hydration Reaction and Hardening of Calcined Clays and Related Minerals III. Influence of Calcination Process of Kaolinite on Mechanical Strengths of Hardened Metakaolinite. Cement and Concrete Research, 13, 631-637.

[15]   Ambroise, J. (1984) Elaboration de liants pouzzolaniques à moyenne température et étude de leurs propriétés physico-chimiques et mécaniques.

[16]   Okada, K., ōTsuka, N. and Ossaka, J. (1986) Characterization of Spinel Phase Formed in the Kaolin-Mullite Thermal Sequence. Journal of the American Ceramic Society, 69, C-251.
https://doi.org/10.1111/j.1151-2916.1986.tb07353.x

[17]   Percival, H.J., Duncan, J.F. and Foster, P.K. (1974) Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectra. Journal of the American Ceramic Society, 57, 57-61.
https://doi.org/10.1111/j.1151-2916.1974.tb10813.x

[18]   Chakraborty, A.K. (2003) DTA Study of Preheated Kaolinite in the Mullite Formation Region. Thermochimica Acta, 398, 203-209.

[19]   San Nicolas, R. (2011) Approche Performantielle des bétons avec métakaolins obtenus par calcination flash. Université de Toulouse, Université Toulouse III-Paul Sabatier.

[20]   Togo Heidelberg Cement Africa. http://www.hcafrica.com/en/togo

[21]   EN 196-3 (2008) Méthodes d’essais des ciments—Partie 3: Détermination du temps de prise et de la stabilité. CEN.

[22]   NFP 94-056 (1996) Sols: Reconnaissance et essais—Analyse granulométrique-Méthode par tamisage á sec après lavage. AFNOR.

[23]   Sore, S.O., Messan, A., Prud’homme, E., Escadeillas, G. and Tsobnang, F. (2016) Synthesis and Characterization of Geopolymer Binders Based on Local Materials from Burkina Faso-Metakaolin and Rice Husk Ash. Construction and Building Materials, 124, 301-311.

[24]   NF EN 196-1 (2008) Méthodes d’essais des ciments—Partie 1: Détermination des résistances mécaniques. AFNOR.

[25]   NF P 15-433 (1994) Méthodes d’essais des ciments—Détermination du retrait et du gonflement. AFNOR.

[26]   NFP 15-436 (1988) Binders-Measuring the Hydration Heat of Cements by Means of Semi-Adiabatic Calorimetry (Langavant Method). AFNOR.

[27]   AFPC-AFREM (1998) Taux d’absorption par succions capillaires.

[28]   ASTM D 559 (1996) Standard Test Methods for Wetting and Drying. ASTM.

[29]   Brooks, J.J. and Megat Johari, M.A. (2001) Effect of Metakaolin on Creep and Shrinkage of Concrete. Cement and Concrete Composites, 23, 495-502.

[30]   Badogiannis, E., Kakali, G., Dimopoulou, G., Chaniotakis, E. and Tsivilis, S. (2005) Metakaolin as a Main Cement Constituent. Exploitation of Poor Greek Kaolins. Cement and Concrete Composites, 27, 197-203.

[31]   Frias, M., De Rojas, M.S. and Cabrera, J. (2000) The Effect That the Pozzolanic Reaction of Metakaolin Has on the Heat Evolution in Metakaolin-Cement Mortars. Cement and Concrete Research, 30, 209-216.

[32]   Ambroise, J., Maximilien, S. and Pera, J. (1994) Properties of Metakaolin Blended Cements. Advanced Cement-Based Materials, 1, 161-168.

[33]   Khatib, J.M. and Wild, S. (1996) Pore Size Distribution of Metakaolin Paste. Cement and Concrete Research, 26, 1545-1553.

[34]   Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and Degeimbre, R. (2003) Durability of Mortars Modified with Metakaolin. Cement and Concrete Research, 33, 1473-1479.

[35]   Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B. (2010) Transport Properties in Metakaolin Blended Concrete. Construction and Building Materials, 24, 2217-2223.

[36]   Wild, S., Khatib, J.M. and Jones, A. (1996) Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete. Cement and Concrete Research, 26, 1537-1544.

[37]   Khatib, J.M. and Clay, R.M. (2004) Absorption Characteristics of Metakaolin Concrete. Cement and Concrete Research, 34, 19-29.

[38]   Monteny, J., et al. (2000) Chemical, Microbiological, and in Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete. Cement and Concrete Research, 30, 623-634.

[39]   Alexander, M., Bertron, A. and De Belie, N. (2013) Performance of Cement-Based Materials in Aggressive Aqueous Environments, 10. Springer, Berlin.
https://doi.org/10.1007/978-94-007-5413-3_11

[40]   Stark, D. (2002) Performance of Concrete in Sulfate Environments.

 
 
Top