WJCMP  Vol.7 No.3 , August 2017
Crystal Growth of Cu6(Ge,Si)6O18·6H2O and Assignment of UV-VIS Spectra in Comparison to Dehydrated Dioptase and Selected Cu(II) Oxo-Compounds Including Cuprates
Abstract: Low-dimensional quantum spin systems with the Cu2+ central ion are still in the focus of experimental and theoretical research. Here is reported on growth of mm-sized single-crystals of the low-dimensional S = 1/2 spin compound Cu6(Ge,Si)6O18·6H2O by a diffusion technique in aqueous solution. A route to form Si-rich crystals down to possible dioptase, the pure silicate, is discussed. Motivated by previously reported incorrect assignments of UV-VIS spectra, the assignment of dd excitations from such spectra of the hexahydrate and the fully dehydrated compound is proposed in comparison to dioptase and selected Cu(II) oxo-compounds using bond strength considerations. Non-doped cuprates as layer compounds show higher excitation energies than the title compound. However, when the antiferromagnetic interaction energy as Jz·ln(2) is taken into account for cuprates, a single linear relationship between the Dqe excitation energy and equatorial Cu(II)-O bond strength is confirmed for all compounds. A linear representation is also confirmed between 2A1g energies and a function of axial and equatorial Cu-O bond distances if auxiliary axial bonds are used for four-coordinated compounds. The quotient Dt/Ds of experimental orbital energies deviating from the general trend to smaller values indicates the existence of H2O respectively Cl− axial ligands in comparison to oxo-ligands, whereas larger Dt/Dqe values indicate missing axial bonds. The quotient of the excitation energy 2A1g by 2·2Eg-2B2g allows checking for correctness of the assignment and to distinguish between axial oxo-ligands and others like H2O or Cl−.
Cite this paper: Otto, H. (2017) Crystal Growth of Cu6(Ge,Si)6O18·6H2O and Assignment of UV-VIS Spectra in Comparison to Dehydrated Dioptase and Selected Cu(II) Oxo-Compounds Including Cuprates. World Journal of Condensed Matter Physics, 7, 57-79. doi: 10.4236/wjcmp.2017.73006.

[1]   Ginetti, Y. (1954) Structure cristalline du métagermanate de cuivre. Bulletin des Sociétés Chimiques Belges, 63, 209-216.

[2]   Vollenkle, H., Wittmann, A. and Nowotny, H. (1967) Zur Kristallstruktur von CuGeO3. Monatshefte für Chemie, 98, 1352-1357.

[3]   Hase, M., Terasaki, I. and Uchinokura, K. (1993) Observation of the Spin-Peierls Transition in Linear Cu2+ (Spin-1/2) Chains in an Inorganic Compound CuGeO3. Physical Review Letters, 70, 3651-3654.

[4]   Boucher, J.P. and Regnault, L.P. (1996) The Inorganic Spin-Peierls Compound CuGeO3. Journal de Physique I, 6, 1939-1966.

[5]   Otto, H.H., Brandt, H.J. and Meibohm, M. (1996) über die Existenz des Kupferpolysilicats Cu{uB11∞1}[1SiO3]. Beiheft zu European Journal of Mineralogy, 8, 206.

[6]   Otto, H.H. and Meibohm, M. (1999) Crystal Structure of Copper Polysilicate, Cu[SiO3]. Zeitschrift für Kristallographie, 214, 558-565.

[7]   Baenitz, M., Geibel, C., Dischner, M., Sparn, G., Steglich, F., Otto, H.H., Meibohm, M. and Gipius, A.A. (2000) CuSiO3: A Quasi-One-Dimensional S = 1/2 Antiferromagnetic Chain System. Physical Review B, 62, 12201-12205.

[8]   Wolfram, H., Otto, H.H., Cwik, M., Braden, M., André, G., Bourée, G.F., Baenitz, M. and Steglich, F. (2004) Neutron Diffraction Study of the Nuclear and Magnetic Structure of the Quasi-One-Dimensional Compound CuSiO3 around TN = 8 K. Physical Review B, 69, 144115-144127.

[9]   Gros, C., Lemmens, P., Choi, K.Y., Güntherodt, G., Baenitz, M. and Otto, H.H. (2002) Quantum Phase Transition in the Dioptase Magnetic Lattice. Europhysics Letters, 60, 276-280.

[10]   Janson, O., Tsirlin, A.A., Schmitt, M. and Rosner, H. (2010) Large Quantum Fluctuations in the Strongly Coupled Spin 1/2 Chains of Green Dioptase Cu6Si6O18·6H2O.Physical ReviewB, 82, 14424, 1-8.

[11]   Brandt, H.J. and Otto, H.H. (1997) Synthesis and Crystal Structure of Cu6[Ge6O18]·6H2O: A Dioptase-Type Cyclo-Germanate. Zeitschrift für Kristallographie, 212, 34-40.

[12]   Hase, M., Ozawa, K. and Shinya, N. (2003) Magnetism of Cu6Ge6O18·xH2O (x = 0 ~ 6), a Compound of the One-Dimensional Heisenberg S = 1/2 Model with Competing Antiferromagnetic Interactions. Physical Review B, 68, Article ID: 214421.

[13]   Law, J.M., Hoch, C., Kremer, R.K., Kang, J., Lee, C., Wangbo, M.H. and Otto, H.H. (2010) Quantum Critical Behavior in the Dioptase Lattice: Magnetic Properties of CuMO3.yH2O (M = Si, Ge, y = 1,0). Conference on Highly Frustrated Magnetism, Baltimoire.

[14]   Meibohm, M. (1999) Zur Kristallchemie und Kristallphysik von neuen Silikaten und Germanaten des Kupfers mit ketten-und ringformigen Anionen. Doctoral Thesis, TU Clausthal.

[15]   Otto, H.H. (2000) über natürliche und synthetische Silicate des Kupfers. Aufschluss, 51, 47-55.

[16]   Otto, H.H. (1968) Zur Kristallchemie von Verbindungen MeII[Ge(OH)6| (SO4)2]·3H2O. Naturwiss, 55, 387.

[17]   Brandt, H.J. (1997) Synthese, Kristallstruktur und Eigenschaften neuer, mit Dioptas verwandter Hexacyclogermanate des Bleis und Kupfers. Clausthaler Geowissen-schaftliche Dissertationen, H52, TU Clausthal.

[18]   Bakhtin, A.I. (1979) Optical Absorption Spectra of Cu2+ Ions in Dioptase. Mineralogicheskii Zhurnal, 13, 73-78.

[19]   Reddy, K.M., Jacob, A.S. and Reddy, B.J. (1986) EPR and Optical Spectra of Cu2+ in Dioptase. Ferroelectrics Letters Section, 6, 103-112.

[20]   Breuer, K.H. and Eysel, W. (1988) Structural and Chemical Varieties of Dioptase, Cu6[Si6O18]·6H2O. Zeitschrift für Kristallographie, 184, 1-11.

[21]   Huang, Y.P., Jiang, M., Wang, L.J. and Feng, W.L. (2008) Theoretical Investigation of the Optical Spectra and g Factors for Cu2+ in Dioptase. Philosophical Magazine, 88, 1701-1704.

[22]   Wolfram, H. (2004) Zur Kristallchemie und Kristallphysik niedrigdimensionales Silicate, Germanate und Arsenate des Kupfers. Dissertation, TU Clausthal.

[23]   Otto, H.H. and Wolfram, H. (2017) New Cost-Efficient Ambient Pressure Synthesis, Rietfeld Analysis and UV-VIS Spectrum of Litidionite, CuNaKSi4O10, a Weathering-Proof Ancient Pigmente. Physics and Chemistry of Minerals.

[24]   Rudko, G.Y., Long, V.C., Musfeldt, J.L., Koo, H.J., Whangbo, M.H., Revcolevschi, A., Dhalenne, G. and Bernholdt, D.E. (2001) Electronic Transition in Doped and Undoped Copper Germanate. Chemistry of Materials, 13, 939-944.

[25]   Tjeng, L.H., Sincovic, B., Brookes, N.B., Goedkoop, J.B., Hesper, R., Pelegrin, E., de Groot, F.M.F., Altieri, S., Hulbert, S.L., Shekel, E. and Sawatzky, G.A. (1997) Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO. Physical Review Letters, 78, 1126-1129.

[26]   Duda, L.C., Downes, J., McGuiness, C., Schmitt, T., Augustsson, A., Smith, K.E., Dhalenne, G. and Revcolevschi, A. (2000) Bandlike and Excitonic States of Oxygen in CuGeO3: Observation Using Polarized Resonant Soft-X-Ray Emission Spectroscopy. Physical Review B, 61, 4186-4189.

[27]   Jahn, H.A. and Teller, E. (1937) Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proceedings of the Royal Society, 161, 220-235.

[28]   Siemons, W., Koster, G., Blank, D.H.A., Hammond, R.H., Geballe, T.H. and Beasley, M.R. (2008) Tetragonal CuO: A New End Member of the 3d Transition Metal Monoxides.

[29]   Gerloch, M. and Slade, R. (1973) Ligand-Field Parameters. Cambridge University Press, Cambridge.

[30]   Haverkort, M.W. (2005) Spin and Orbital Degrees of Freedom in the Transition Metal Oxides and Oxide Thin Films Studied by Soft X-Ray Absorption Spectroscopy. Doctoral Thesis, University of Koln.

[31]   Lebernegg, S., Amthauer, G. and Grodzicki, M. (2009) The D-Hamiltonian—A New Approach for Evaluating Optical Spectra of Transition Metal Complexes. Journal of Molecular Structure, 924-926, 473-476.

[32]   Eby, R.K. and Hawthorne, F.C. (1993) Structural Relation in Copper Oxysalt Minerals. I. Structural Hierachy. Acta Crystallographica Section B, 49, 28-56.

[33]   Moretti Sala, M., Bisogni, V., Aruta, C., Balestrino, G., Berger, H., Brookes, N.B., DeLuca, G.M., Castro, D.D., Grioni, M., Guarise, M., Medaglia, P.G., Miletto Granozio, F., Minola, M., Perna, P., Radovic, M., Sallustro, M., Schmitt, T., Zhou, K.J., Braikovic, L. and Ghiringhelli, G. (2011) Energy and Symmetry of DD Excitations in Undoped Layered Cuprates Measured by Cu L3 Resonant Inelastic X-Ray Scattering. New Journal of Physics, 13, 1-25.

[34]   Rocquefelte, X., Schwarz, K. and Blaha, P. (2012) Theoretical Investigation of the Magnetic Exchange Interaction in Copper (II) Oxides under Chemical and Physical Pressures. Scientific Reports, Article No. 759, 1-7.

[35]   Otto, H.H. (2015) Modeling of a Cubic Antiferromagnetic Cuprate Super-Cage. World Journal of Condensed Matter Physics, 5, 160-178.

[36]   Brown, I.D. and Shannon, R.D. (1973) Empirical Bond-Strength Bond-Length Curves for Oxides. Acta Crystallographica Section A, 29, 266-282.

[37]   Otto, H.H. (1980) Turbo-Basic Program Valence. University of Regensburg.

[38]   Yamada, M., Nishi, M. and Akimitsu, J. (1996) Electron Paramagnetic Resonance Governed by the Dzyaloshinsky-Moriya Antisymmetric Exchange Interaction in CuGeO3. Journal of Physics: Condensed Matter, 8, 2625-2640.

[39]   Hidaka, M., Hatae, M., Yamada, I., Nishi, M. and Akimitsu, J. (1997) Re-Examination of the Room Temperature Crystal Structure of CuGeO3 by X-Ray Diffraction Experiments: Observation of New Superlattice Reflections. Journal of Physics: Condensed Matter, 9, 809-824.

[40]   Gippius, A.A., Morozova, E.N., Khozeev, D.F., Vasil’ev, A.N., Baenitz, M., Dhalenne, G. and Revcolevschi, A. (2000) Non-Equivalence of Cu Crystal Sites in CuGeO3 as Evidenced by NQR. Journal of Physics: Condensed Matter, 12, L71-L75.

[41]   Li, X., Kanai, M., Kawai, T. and Kawai, S. (1992) Epitaxial Growth and Properties of Ca1-xSrxCuO2 Thin Film (x = 0.18 to 1.0) Prepared by Co-Deposition and Atomic Layer Stacking. Japanese Journal of Applied Physics, 31, L217-L220.

[42]   Giester, G. and Rieck, B. (1994) Effenbergite, a New Mineral from the Kalahari Manganese Field, South Africa, Description and Crystal Structure. Mining Magazine, 58, 663-670.

[43]   Chakoumakos, B.C., Fernandez-Baca, J.A. and Boatner, L.A. (1993) Refinement of the Structures of the Layer Silicates MCuSi4O10 (M = Ca,Sr,Ba) by Rietfeld Analysis of Neutron Powder Diffraction Data. Journal of Solid State Chemistry, 103, 105-113.

[44]   Steinberg, H., Meibohm, M., Hofmann, W. and Otto, H.H. (1999) Neue Synthese-methode und Rietfeld-Verfeinerung von CaCuSi4O10. Beiheft zu European Journal of Mineralogy, 11, 219.

[45]   Sato, S. and Nakada, J. (2011) Structure of Y2BaCuO5: A Refinement by Single Crystal X-Ray Diffraction. Acta Crystallographica Section C, 45, 523-525.

[46]   Ribbe, P.H., Gibbs, G.V. and Hamil, M.M. (1977) A Refinement of the Structure of Dioptase, Cu6[Si6O18]·6H2O. American Mineralogist, 62, 807-811.

[47]   Belokoneva, E.L., Gubina, Y.K. and Forsyth, J.B. (2001) The Charge-Density Distribution and Antiferromagnetic Properties of Azurite Cu3[CO3]2(OH)2. Physics and Chemistry of Minerals, 28, 498-507.

[48]   Bacon, G.E. and Titterton, D.H. (1975) Neutron-Diffraction Studies of CuSO4·5H2O and CuSO4·5D2O. Zeitschrift für Kristallographie, 141, 330-341.

[49]   Hawthorne, F.C. (1986) Lammerite, Cu3(AsO4)2; A Modulated Close-Packed Structure. American Mineralogist, 71, 206-209.

[50]   Henderson, R.R., Yang, H., Downs, R.T. and Jenkins, R.A. (2008) Redetermination of Conichalcite, CaCu(AsO4)(OH). Acta Crystallographica Section E, 64, i53-i54.

[51]   Haflinger, P.S., Gerber, S., Pramod, R., Schnells, V.I., dalla Plazza, B., Chati, R., Pomjakushin, V., Conder, K., Pomjakushina, E., Le Dreau, L., Christensen, N.B., Syljuasen, O.F., Normand, B. and Ronnow, H.M. (2014) Quantum and Thermal Motion, Oxygen Isotope Effect, and Superexchange Distribution in La2CuO4. Physical Review B, 89, Article ID: 085113.

[52]   Miller, L.L., Wang, X.L., Wang, S.X., Stassis, C., Johnston, D.C., Faber, J. and Loong, C.K. (1990) Synthesis, Structure, and Properties of Sr2CuO2Cl2. Physical Review B, 41, 1921-1925.

[53]   Reddy, R.R., Reddy, S.L., Rao, P.S. and Frost, R.L. (2010) Optical Absorption an EPR Studies on Tenorite Mineral. Spectrochimica Acta Part A, 75, 28-31.

[54]   Reddy, B.J., Frost, R.L. and Martens, W.N. (2005) Characterization of Conichalcite by SEM, FTIR, Raman and Electronic Reflectance Spectroscopy. Mining Magazine, 69, 155-167.

[55]   Baran, E.J. and Cicileo, G.P. (1990) The Electronic Spectrum of Y2BaCuO5. Journal of Materials Science Letters, 9, 1-2.

[56]   Reddy, B.J. and Sarma, K.B.N. (1981) Absorption Spectra of Cu2+ in Azurite. Solid State Communications, 38, 547-549.

[57]   Redhammer, G.J., Koll, L., Bernroider, M., Tippelt, G., Amthauer, G. and Roth, G. (2007) Co2+-Cu2+ Substitution in Bieberite Solid-Solution Series, (Co1-xCux)SO4·7H2O, 0.00 ≤ x ≤ 0.46: Synthesis, Single-Crystal Structure Analysis, and Optical Spectroscopy. American Mineralogist, 192, 532-545.

[58]   Kendrick, E., Kirk, C.J. and Dann, S.E. (2007) Structure and Colour Properties in the Egyptian Blue Family, M1-xM’xCuSi4O10 as a Function of M, M’ where M, M’ = Ca, Sr and Ba. Dyes and Pigments, 73, 13-18.

[59]   Ford, R.J. and Hitchman, M.A. (1979) Single Crystal Electronic and EPR Spectra of CaCuSi4O10, a Synthetic Silicate Containing Copper (II) in a Four-Coordinate, Planar Ligand. Inorganica Chimica Acta, 33, L167-L170.

[60]   The NIST Reference on Constants, Units, and Uncertainty. NIST, Gaithersburg, MD20899.