MSA  Vol.8 No.9 , August 2017
Optical and NH3 Gas Sensing Properties of Hole-Transport Layers Based on PEDOT: PSS Incorporated with Nano-TiO2
Abstract: Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged.
Cite this paper: Long, L. , Trung, T. , Truong, V. and Dinh, N. (2017) Optical and NH3 Gas Sensing Properties of Hole-Transport Layers Based on PEDOT: PSS Incorporated with Nano-TiO2. Materials Sciences and Applications, 8, 663-672. doi: 10.4236/msa.2017.89047.

[1]   Quyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G. and Shinar, J. (2004) On the Mechanism of Conductivity Enhancement in poly(3,4,ethylenedioxythiophene): Poly(styrene sulfonate) Film through Solvent Treatment. Polymer, 45, 8443-8450.

[2]   Tehrani, P., Kanciurzewska, A., Crispin, X., Robinson, N.D., Fahlman, M. and Berggren, M. (2007) The Effect of pH on the Electrochemical over, Oxidation in Pedot: PSS Films. Solid State Ionics, 177, 3521-3529.

[3]   Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q. and Yang, Y. (2005) High-Conductivity Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Advanced Functional Materials, 15, 2003-2008.

[4]   Hokazono, M., Anno, H. and Toshima, N. (2014) Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices. Journal of Electronic Materials, 3, 2196-2201.

[5]   Spanggaard, H. and Kerbs, F.C. (2004) A Brief History of the Development of Organic and Polymeric Photovoltaics. Solar Energy Materials and Solar Cells, 83, 125-146.

[6]   Petrella, A., Tamborra, M., Cozzoli, P.D., Curri, M.L., Striccoli, M., Cosma, P., Farinola, G.M., Babudri, F., Naso, F. and Agostiano, A. (2004) TiO2 Nanocrystals-MEH-PPV Composite Thin Films as Photoactive Material. Thin Solid Films, 451-452, 64-68.

[7]   Burlakov, V.M., Kawata, K., Assender, H.E., Briggs, G.A.D., Ruseckas, A. and Samuel, I.D.W. (2005) Discrete Hopping Model of Exciton Transport in Disordered Media. Physical Review B, 72, Article ID: 075206.

[8]   Heuer, H.W., Wehrmann, R. and Kirchmeyer, S. (2002) Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate). Advanced Functional Materials, 12, 89-94.<89::AID-ADFM89>3.0.CO;2-1

[9]   Gavgani, J.N., Dehsari, H.S., Hasani, A., Mahyari, M., Shalamzari, E.K., Salehi, A. and Taromi, F.A. (2015) A Room Temperature Volatile Organic Compound Sensor with Enhanced Performance, Fast Response and Recovery Based on N-Doped Graphene Quantum Dots and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Nanocomposite. Royal Society of Chemistry, 5, 57559-57567.

[10]   Olenych, I.B., Aksimentyeva, O.I., Monastyrskii, L.S., Horbenko, Y.Y. and Yarytska, L.I. (2015) Sensory Properties of Hybrid Composites Based on Poly(3,4-ethylene- dioxythiophene)-porous Silicon-Carbon Nanotubes. Nanoscale Research Letters, 10, 187-195.

[11]   Basu, S. and Bhattacharyya, P. (2012) Recent Development on Graphene and Graphene Oxide Based Solid State Gas Sensors. Sensors and Actuators B, 173, 1-21.

[12]   Yin, P.T., Kim, T.H., Choi, J.W. and Lee, K.B. (2013) Prospects for Graphene-Nanoparticle-Based Hibryd Sensors. Physical Chemistry Chemical Physics, 15, 12785-12799.

[13]   Chu, B.H., Nicolosi, J., Lo, C.F., Strupinski, W., Pearton, S.J. and Ren, F. (2011) Effect of Coated Platinum Thickness on Hydrogen Detection Sensitivity of Graphene-Based Sensors. Electrochemical and Solid State Letters, 14, K43-K46.

[14]   Zhang, M. and Wang, Z. (2013) Nanostructured Silver Nanowires-Graphene Hybrids for Enhanced Electrochemical Detection of Hydrogen Peroxide. Applied Physics Letters, 102, 213104-213106.

[15]   Xing, W., Hu, J., Kung, S.-C., Donavan, K.C., Yan, W., Wu, R. and Penner, R.M. (2012) A Chemically-Responsive Nanojunction within a Silver Nanowire. Nano Letters, 12, 1729-1735.

[16]   Dinh, N.N., Chung, D.N., Thao, T.T. and Hui, D. (2012) Study of Nanostructured Polymeric Composites Used for Organic Light Emitting Diodes and Organic Solar Cells. Journal of Nanomaterials, 2012, Article ID: 190290.

[17]   Selvaganesh, S.V., Mathiyarasu, J., Phani, K.L.N. and Yegnaraman, V. (2011) Chemical Synthesis of PEDOT-Au Nanocomposite. Nano Scale Research Letters, 2, 546-549.

[18]   Chipara, M. and Chipara, M.D. (2008) Uv-Vis Investigations on Ion Beam Irradiated Polycarbonate. E-Polymers, Article No. 145.

[19]   Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials, 12, 481-494.<481::AID-ADMA481>3.0.CO;2-C

[20]   Dinh, N.N., Chi, L.H., Thuy, T.T.C., Thanh, D.V. and Nguyen, T.P. (2008) Study of Nanostructured Polymeric Composites and Hybrid Layers Used for light Emitting Diodes. Journal of the Korean Physical Society, 53, 802-805.

[21]   Yang, S.H., Nguyen, T.P., Le Rendu, P. and Hsu, C.S. (2005) Optical and Electrical Investigations of Poly(p-phenylene vinylene)/Silicon Oxide and Poly(p-phenylene vinylene)/Titanium Oxide Nanocomposites. Thin Solid Films, 471, 230-235.

[22]   Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., Kausch-Busies, N. and Snaith, H.J. (2015) Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 6, 1666-1673.

[23]   Dinh, N.N., Chi, L.H., Thuy, T.T.C., Trung, T.Q. and Truong, V.-V. (2009) Enhancement of Current-Voltage Characteristics of Multilayer Organic Light Emitting Diodes by Using Nanostructured Composite Films. Journal of Applied Physics, 105, Article ID: 093518.

[24]   Elschner, A., Bruder, F., Heuer, H.-W., Jonas, F., Karbach, A., Kirchmeyer, S., Thurm, S. and Wehrmann, R. (2000) PEDT/PSS for Efficient Hole-Injection in Hybrid Organic Light-Emitting Diodes. Synthetic Metals, 111-112, 139-143.

[25]   Book, K., Bassler, H., Elschner, A. and Kirchmeyer, S. (2003) Hole Injection from an ITO/PEDT Anode into the Hole Transporting Layer of an OLED Probed by Bias Induced Absorption. Organic Electronics, 4, 227-232.

[26]   Ha, Y.-G., You, E.-A., Kim, B.-J. and Choi, J.-H. (2005) Fabrication and Characterization of OLEDs Using MEH-PPV and SWCNT Nanocomposites. Synthetic Metals, 153, 205-208.

[27]   Baldo, M.A. and Forrest, S.R. (2001) Interface-Limited Injection in Amorphous Organic Semiconductors. Physical Review B, 64, Article ID: 085201.

[28]   Long, L.M., Dinh, N.N., Thu, H.T., Hoa, H.T.M. and Trung, T.Q. (2016) Synthesis and Characterization of Ag/PEDOT: PSS Films Used for NH3 Selective Sensing. Communications in Physics, 26, 173-180.

[29]   Kate, K.H., Shubhangi, R., Damkale, Khanna, P.K. and Jain, G.H. (2011) Nano-Silver Mediated Polymerization of Pyrrole: Synthesis and Gas Sensing Properties of Polypyrrole (PPy)/Ag Nano-Composite. Journal of Nanoscience and Nanotechnology, 11, 7863-7869.