Back
 AS  Vol.8 No.8 , August 2017
Optimizing Nutrient Use Efficiency and Returns from Soybean Production under Smallholders in Three Agro-Ecologies of Malawi
Abstract:
Field trials were conducted to determine the economically optimum fertilizer rates for soybean production and for optimizing net profits in Dedza, Lilongwe and Salima Districts of Malawi. The effects of PK fertilizer rates on rain use efficiency (RUE), harvest index, agronomic use efficiency of phosphorous (AEP) and potassium (AEK), and value cost ratio (VCR) were evaluated. The applied diagnostic PK fertilizer rates significantly improved soybean grain yields, harvest index, rainwater use efficiency, AEP, AEK and returns to fertilizer use expressed as value cost ratio (VCR). However, the results differed significantly (P < 0.01) among the three agro-ecological zones. The VCR values indicated that the most economical and profitable fertilizer rate was 7.5 kg/ha P in Salima, Dedza and Lilongwe. The lowest economical and profitable NP fertilizer rate was 22.5 kg/ha P plus 20 kg/ha K for Dedza and Lilongwe and 15 kg/ha P plus 30 kg/ha K for Salima District. All the VCR values obtained from applying different PK fertilizer nutrient rates were above two implying that all the applied fertilizer rates had a good value of returns to adequately cover against any risks associated with using fertilizers at small-scale under smallholder farms with inadequate financial resources. The results also presented different available NP fertilizer application rate options for maximizing profits for the financially constrained smallholder farmers.
Cite this paper: Munthali, M. , Nalivata, P. , Makumba, W. , Mbewe, E. , Manase, H. , Oduor, G. , Macharia, M. and Kayuki, K. (2017) Optimizing Nutrient Use Efficiency and Returns from Soybean Production under Smallholders in Three Agro-Ecologies of Malawi. Agricultural Sciences, 8, 801-815. doi: 10.4236/as.2017.88059.
References

[1]   Franke, A.C., Branda, van den G.J. and Giller, K.E. (2014) Which Farmers Benefit Most from Sustainable Intensification? An Ex-Ante Impact Assessment of Expanding Grain Legume Production in Malawi. European Journal of Agronomy, 58, 28-38.
https://doi.org/10.1016/j.eja.2014.04.002

[2]   Sinclair, T.R. and Vadez, V. (2012) The Future of Grain Legumes in Cropping Systems. Crop Pasture, 63, 501-512.
https://doi.org/10.1071/CP12128

[3]   Sinclair, T.R., Marrou, H., Soltani, A., Vadez, V. and Chandolu, K.C. (2014) Soybean Production Potential in Africa. Global Food Security, 3, 31-40.
https://doi.org/10.1016/j.gfs.2013.12.001

[4]   Kabambe, V., Katunga, L., Kapewa, T. and Ngwira, A.R. (2008) Screening Legumes for Integrated Management of Witchweeds (Alectravogelii and Strigaasiatica) in Malawi. African Journal of Agricultural Research, 3, 708-715.

[5]   Kaizzi, K.C., Mohammed, B.M. and Maman, N. (2017) Fertilizer Use Optimization: Principles and Approach. In: Wortmann, C.S. and Keith, S., Eds., Fertilizer Use Optimization in Sub-Saharan Africa, CABI, Nairobi, 9-17.

[6]   Munthali M.W. (2007) Integrated Soil Fertility Management Technologies: A Counteract to Existing Milestone in Obtaining Achievable Economical Crop Yields in Cultivated Lands of Poor Smallholder Farmers in Malawi. In: Bationo, A., Waswa, B., Kihara J. and Kimetu, J., Eds., Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities, Springer, Dordrecht, 531-536.
https://doi.org/10.1007/978-1-4020-5760-1_50

[7]   Tarfa, B.D., Maman, N., Ouattara, K. and Wortmann, C. (2017) Groundnut and Soybean Response to Nutrient Application in West Africa. Agronomy Journal.
https://doi.org/10.2134/agronj2017.03.0132

[8]   Musiyiwa, K., Mpeperekia, S. and Giller, K.E. (2005) Symbiotic Effectiveness and Host Ranges of Indigenous Rhizobia Nodulating Promiscuous Soybean Varieties in Zimbabwean Soils. Soil Biology and Biochemistry, 37, 1169-1176.
https://doi.org/10.1016/j.soilbio.2004.12.004

[9]   Wortmann, C.S., Shapiro, C.A., Ferguson, R. and Mainz, M. (2012) Irrigated Soybean Has a Small Response to Nitrogen Applied during Early Reproductive Growth. Crop Management.
http://www.plantmanagementnetwork.org/sub/cm/research/2012/nitrogen/

[10]   Giller, K.E. and Dashiell, K.E. (2006) Glycine max (L.) Merr. In: Brink, M. and Belay, G., Eds., Plant Resources of Tropical Africa 1. Cereals and Pulses, PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/ CTA, Wageningen, the Netherlands, 76-82.

[11]   Kaizzi, K.C., Byalebeka, J., Semalulu, O., Alou, I.N., Zimwanguyizza, W., Nansamba, A., Odama, E., Musinguzi, P., Ebanyat, P., Hyuda, T., Appollo, K., Kasharu, A.K. and Wortmann, C.S. (2012) Optimizing Smallholder Returns to Fertilizer Use: Bean, Soybean and Ground Nut. Field Crops Research, 127, 109-119.

[12]   Chiezey, U.F. (2013) Field Performance of Soybean (Glycine max (L) Merill) with Farmyard Manure and Inorganic P Fertilizers in the Sub-Humid Savanna of Nigeria. Journal of Agricultural Science, 5, 10.
https://doi.org/10.5539/jas.v5n10p46

[13]   Kumaga, F.K. and Ofori, K. (2004) Response of Soybean to Bradirhizobia Inoculation and Phosphorus Application. International Journal of Agriculture and Biology, 6, 324-327.

[14]   Kanyama-Phiri, G.Y., Snapp, S.S., Kamanga, B., and Wellard, K. (2000) Towards Integrated Soil Fertility Management in Malawi: Incorporating Participatory Approaches in Agricultural Research. Managing Africa’s Soils No. 11. IIED, UK.
http://www.iied.org/drylands

[15]   Peel, M.C., Finlayson, B.L. and Mcmahon, T.A. (2007) Updated World Map of the Koppen-Geiger Climate Classification. Hydrology and Earth System Sciences, 11, 1633-1644.
https://doi.org/10.5194/hess-11-1633-2007

[16]   Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Tahar, G., Thiombiano, L., Van Ranst, E., Yemefack, M. and Zougmore, R., Eds. (2013) Soil Atlas of Africa. European Commission, Luxembourg, 176.

[17]   Kihara, J., Huising, J., Nziguheba, G., Waswa, B.S., Njoroge, S., Kabambe, V., Iwuafor, E., Kibunja, C., Esilaba, A.O. and Coulibaly, A. (2016) Maize Response to Macronutrients and Potential for Profitability in Sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 105, 171.
https://doi.org/10.1007/s10705-015-9717-2

[18]   Sileshi, G.W., Debusho, L.K. and Akinnifesi, F.K. (2012) Can Integration of Legume Trees Increase Yield Stability in Rainfed Maize Cropping Systems in Southern Africa? Agronomy Journal, 104, 1392-1398.
https://doi.org/10.2134/agronj2012.0063

[19]   Kamanga B.C.G., Whitbread, A., Wall, P., Waddington, S.R., Almekinders, C. and Giller, K.E. (2010) Farmer Evaluation of Phosphorus Fertilizer Application to Annual Legumes in Chisepo, Central Malawi. African Journal of Agricultural Research, 5, 668-680.

[20]   Kibunja Catherine, N., Ndungu-Magiroi, K.W., Wamae, D.K., Mwangi, T.J., Nafuma, L. (Deceased), Koech, M.N., Ademba, J. and Kitonyo, E.M. (2017) Optimizing Fertilizer Use within the Context of Integrated Soil Fertility Management in Kenya. In: Wortmann, C.S. and Keith, S., Eds., Fertilizer Use Optimization in Sub-Saharan Africa, CABI, Nairobi, 82-99.

[21]   Senkoro, C., Ley, J.G., Marandu, A.E., Wortmann, C.S., Mzimbiri, M., Msaky, J., Umbwe, R. and Lyim, S.D. (2017) Optimizing Fertilizer Use within the Context of Integrated Soil Fertility Management in Tanzania. In: Wortmann, C.S. and Keith, S., Eds., Fertilizer Use Optimization in Sub-Saharan Africa, CABI, Nairobi, 176-191.
https://doi.org/10.1079/9781786392046.0176

[22]   Nalivata, P., Kibunja, C., Mutegi, J., Tetteh, F., Tarfa, B., Dicko, M.K., Ouattara, K., Cyamweshi, R.A., Nouri, M.K., Bayu, W. and Wortmann, C.S. (2017) Integrated Soil Fertility Management in Sub-Saharan Africa. In: Wortmann, C.S. and Keith, S., Eds., Fertilizer Use Optimization in Sub-Saharan Africa, CABI, Nairobi, 25-38.
https://doi.org/10.1079/9781786392046.0025

 
 
Top